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Abstract. Let R = k[x1, . . . , xn] be a polynomial ring over a field k and let I ⊂ R be a monomial
ideal preserved by the natural action of the symmetric group Sn on R. We give a combinatorial
method to determine the Sn-module structure of Tor i(I, k). Our formula shows that Tor i(I, k) is
built from induced representations of tensor products of Specht modules associated to hook partitions,
and their multiplicities are determined by topological Betti numbers of certain simplicial complexes.
This result can be viewed as an Sn-equivariant analogue of Hochster’s formula for Betti numbers of
monomial ideals. We apply our results to determine extremal Betti numbers of Sn-invariant monomial
ideals, and in particular recover formulas for their Castelnuovo–Mumford regularity and projective
dimension. We also give a concrete recipe for how the Betti numbers change as we increase the number
of variables, and in characteristic zero (or > n) we compute the Sn-invariant part of Tor i(I, k) in
terms of Tor groups of the unsymmetrization of I.

1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. The study of the graded Betti numbers

βij(I) = dimk Tor i(I, k)j

of a homogeneous ideal I is one of the central research topics in commutative algebra. When I is a
monomial ideal, this is closely related to combinatorial topology, and is the subject of a vast literature
[6, Section 5], [15, Part II], [20, Part I], [23, Part III]. One of the most famous results on this topic
is Hochster’s formula [6, §5.5], which enables one to study Betti numbers of monomial ideals using
combinatorics of simplicial complexes, and has seen numerous applications over the years. The goal
of this paper is to develop an analogue of Hochster’s formula for monomial ideals I that are invariant
under the action of the symmetric group Sn by coordinate permutations.

In general, if G ⊆ GLn(k) is a subgroup and I ⊆ R is a G-invariant ideal (g(I) = I for all g ∈ G),
then each Tor i(I, k) acquires a G-module structure. The representation theory of G dictates the
possible building blocks that make up Tor i(I, k), reducing the problem of understanding Tor i(I, k) to
that of identifying the multiplicity of each building block. When G = k×n is the n-torus, the building
blocks are 1-dimensional, given by the torus characters, and the calculation of their multiplicity (the
dimension of the multigraded components of Tor i(I, k)) is the content of Hochster’s formula. When
G = k×n oSn extends the torus action by that of the symmetric group, our work will show that a
natural set of building blocks arises via induction from Specht modules associated to hook partitions
for smaller symmetric groups. We then identify the multiplicities of each block with topological Betti
numbers of associated simplicial complexes, which yields an Sn-equivariant Hochster’s formula.
To state our results, we first introduce some notation. We let

Pn = {(λ1, . . . , λn) ∈ Zn | λ1 ≥ · · · ≥ λn ≥ 0}
1
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be the set of partitions consisting of n non-negative integers. For a vector a = (a1, . . . , an) ∈ Zn
≥0,

we write xa = xa1
1 · · ·xan

n , and write part(a) ∈ Pn for the unique partition which is a rearrangement
of a1, . . . , an. For example, we have part(2, 1, 3, 2) = (3, 2, 2, 1). Throughout the text, I will denote
an Sn-invariant monomial ideal in R. For such I, we let

P (I) = {λ ∈ Pn | xλ ∈ I},
and think of P (I) informally as the set of partitions in I. For partitions λ1, λ2, . . . , λr ∈ Pn, we define

(1.1) ⟨λ1, . . . , λr⟩Sn =
∑r

k=1(σ(x
λk
) | σ ∈ Sn) ⊂ k[x1, . . . , xn]

and call it the Sn-invariant monomial ideal generated by λ1, . . . , λr. For instance, we have

(1.2)
I = ⟨(4, 1, 1), (5, 2, 0)⟩S3
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If M is a Zn-graded R-module and a ∈ Zn, then Ma denotes the a-th graded component of M . Let

M⟨λ⟩ =
⊕
a∈Zn

part(a)=λ

Ma

for λ ∈ Pn. We note that Tor i(I, k)⟨λ⟩ is fixed by the Sn-action, so we have a decomposition

Tor i(I, k) =
⊕
λ∈Pn

Tor i(I, k)⟨λ⟩

as Sn-modules. Therefore, we may focus on the Sn-module structure of each Tor i(I, k)⟨λ⟩.
It will be convenient to use the abbreviation

(ap11 , ap22 , . . . , apss ) = (a1, . . . , a1, a2, . . . , a2, . . . , as, . . . , as)

where each ak appears pk times on the right side, and to identify each partition µ with its Young
diagram. For example, (22, 1) will be identified with . For a partition

µ = (dp11 , . . . , dpss , 0ps+1) ∈ Pn,(1.3)

where d1 > · · · > ds > 0, p1, . . . , ps > 0 and ps+1 ≥ 0, we define

(1.4) p(µ) = (p1 − 1, . . . , ps − 1) and s(µ) = s.

For a vector c = (c1, . . . , cs) ∈ Zs
≥0 with c ≤ (p1, . . . , ps), we define

(1.5) µ \ c = (dp1−c1
1 , (d1 − 1)c1 , dp2−c2

2 , (d2 − 1)c2 , . . . , dps−cs
s , (ds − 1)cs , 0ps+1) ∈ Pn.

Example 1.1. Suppose that µ = (52, 32, 22) and n = 6. We have s = 3, p1 = p2 = p3 = 2, and
p4 = 0, hence p(µ) = (1, 1, 1). If we let c = (1, 2, 1) then

(52, 32, 22) \ (1, 2, 1) = (5, 4, 23, 1).

As illustrated below, we can think of (5, 4, 23, 1) as being obtained from (52, 32, 22) by removing one
box from the fifth column, two boxes from the third column, and one box from the second column:

(52, 32, 22)

−→

×
×
×
×

(5, 4, 23, 1)



EQUIVARIANT HOCHSTER’S FORMULA 3

We let e1, . . . , es be the standard vectors of Zs and write eF =
∑

i∈F ei for F ⊂ [s] = {1, . . . , s}.
For c ≤ p(µ), we define the simplicial complex (see Section 2.2 for some background)

(1.6) ∆µ,c(I) = {F ⊂ [s] | µ \ (c+ eF ) ∈ P (I)},

and define the numbers γµ,c
i (I) by

γµ,c
i (I) = dimk

(
H̃i−1(∆

µ,c(I))
)
,

where H̃•(∆) denote the reduced homology groups of a simplicial complex ∆, with coefficients in k.

Example 1.2. Let I be as in (1.2), let µ = (5, 2, 1) and let c = (0, 0, 0). The simplicial complex
∆µ,c(I) can be identified with the intersection of the interval [µ \ c, µ \ (c+ e[s])] = [(5, 2, 1), (4, 1, 0)]
with P (I) in the poset Pn (with the reversed order). The faces of the complex and the corresponding
partitions are colored in red and are pictured below.
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It follows that

∆µ,c(I) =
{
{1, 2}, {1}, {2}, {3},∅

}
,

whose only non-vanishing reduced homology group is H̃0(∆
µ,c(I)), of dimension γµ,c

1 (I) = 1.

To introduce the final ingredient of our main result, we let Sλ denote the Specht module associated
with a partition λ (see Section 2.4 for some background), which is a module over S|λ|. We say that
λ is a hook partition if λi ≤ 1 for i > 1 (the terminology is suggestive of the shape of the Young
diagram of λ). For a sequence

π = ((p1, 1
q1), . . . , (pr, 1

qr))

of hook partitions with
∑r

k=1(pk + qk) = n, we write

Sπ = IndSn
Sp1+q1×···×Spr+qr

(
S(p1,1q1 ) ⊠ · · ·⊠ S(pr,1qr )

)
,(1.7)

where ⊠ denotes the (external) tensor product of representations, and Ind denotes the induced
representation. We are now ready to state our main theorem.
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Theorem 1.3. Let µ = (dp11 , . . . , dpss , 0ps+1) ∈ Pn with d1 > · · · > ds > 0 and let I be an Sn-invariant

monomial ideal of R. We have an isomorphism of k-vector spaces

(1.8) Tori(I, k)⟨µ⟩ ∼=
⊕

0≤c=(c1,...,cs)≤p(µ)

(
S((p1−c1,1c1),...,(ps−cs,1cs),(ps+1))

)γµ,c
i−|c|(I)

.

Moreover, if char(k) = 0 or char(k) > n, then (1.8) is an isomorphism of Sn-modules.

In fact, our proof will show that (in arbitrary characteristic) Tor i(I, k)⟨µ⟩ has a filtration by Sn-
submodules, whose associated graded is isomorphic to the right side of (1.8). Since representations
of Sn are semisimple if char(k) = 0 or char(k) > n, it follows that (1.8) is an isomorphism of Sn-
modules in these cases (we note that a similar issue arises in the calculation of Ext modules in [24,
Main Theorem]). Theorem 1.3 clarifies our earlier assertion that the building blocks of Tor i(I, k)
are induced representations of tensor products of Specht modules, and that their multiplicities are
topological Betti numbers. We now illustrate Theorem 1.3 with an example.

Example 1.4. If I is as in (1.2) then using Macaulay2 one can see that the Betti table of I is

0 1 2
total: 9 12 4

6: 3 . .
7: 6 6 .
8: . 3 .
9: . 3 3
10: . . 1

and that

Tor0(I, k) = Tor0(I, k)⟨(4,1,1)⟩ ⊕ Tor0(I, k)⟨(5,2,0)⟩,
Tor1(I, k) = Tor1(I, k)⟨(4,4,1)⟩ ⊕ Tor1(I, k)⟨(5,2,1)⟩ ⊕ Tor1(I, k)⟨(5,5,0)⟩,
Tor2(I, k) = Tor2(I, k)⟨(4,4,4)⟩ ⊕ Tor2(I, k)⟨(5,5,1)⟩.

To identify the S3-module structure, one first computes the relevant complexes ∆µ,c(I):

∆(4,1,1),(0,0)(I) = ∆(5,2,0),(0,0)(I) = {∅},

∆(4,4,1),(1,0)(I) = ∆(5,5,0),(1)(I) = {∅}, ∆(5,2,1),(0,0,0) =
{
{1, 2}, {1}, {2}, {3},∅

}
,

∆(4,4,4),(2)(I) = {∅} and ∆(5,5,1),(1,0) =
{
{1}, {2},∅

}
.

We leave the details of this calculation to the reader, noting that the description of ∆(5,2,1),(0,0,0)(I)
was explained in Example 1.2. We then have

γ
(4,1,1),(0,0)
0 (I) = γ

(5,2,0),(0,0)
0 (I) = 1,

γ
(4,4,1),(1,0)
0 (I) = γ

(5,2,1),(0,0,0)
1 (I) = γ

(5,5,0),(1)
0 (I) = 1, and

γ
(4,4,4),(2)
0 (I) = γ

(5,5,1),(1,0)
1 (I) = 1.
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Theorem 1.3 implies based on these computations that we have

Tor0(I, k)⟨(4,1,1)⟩ ∼= IndS3
S1×S2

(
S ⊠ S

)
,

Tor0(I, k)⟨(5,2,0)⟩ ∼= IndS3
S1×S1×S1

(
S ⊠ S ⊠ S

)
,

Tor1(I, k)⟨(4,4,1)⟩ ∼= IndS3
S2×S1

(
S ⊠ S

)
,

Tor1(I, k)⟨(5,2,1)⟩ ∼= IndS3
S1×S1×S1

(
S ⊠ S ⊠ S

)
,

Tor1(I, k)⟨(5,5,0)⟩ ∼= IndS3
S2×S1

(
S ⊠ S

)
,

Tor2(I, k)⟨(4,4,4)⟩ ∼= S ,

Tor2(I, k)⟨(5,5,1)⟩ ∼= IndS3
S2×S1

(
S ⊠ S

)
.

As a first application of Theorem 1.3, we explain how to determine the Sn-invariant part of
Tor i(I, k). We express I as in (1.1), and define the unsymmetrization of I to be the ideal

J = (xλ1

, · · · , xλr

) ⊆ R.

The relationship between the Tor groups of I and J is given by the following.

Theorem 1.5. If char(k) = 0 or char(k) > n, then for partitions λ1, · · · , λr ∈ Pn we have

Tor i
(
⟨λ1, · · · , λr⟩Sn ,k

)Sn ∼= Tor i
(
(xλ1

, · · · , xλr

), k
)

for all i.

The proof of Theorem 1.5 is explained in Section 4 as an application of Theorem 1.3 and the Nerve
Theorem. Here, we illustrate Theorem 1.5 with an example.

Example 1.6. If I is as in (1.2), then its unsymmetrization is the ideal J = (x4
1x2x3, x

5
1x

2
2). Since

the generators of J have a unique syzygy (coming from their lcm x5
1x

2
2x3), we get

Tor0(J,k) = Tor0(J,k)(4,1,1) ⊕ Tor0(J,k)(5,2,0) ∼= k⊕ k

and

Tor1(J,k) = Tor1(J,k)(5,2,1) ∼= k.
Theorem 4.1 implies that

Tor0(I, k)S3 = Tor0(I, k)S3

⟨(4,1,1)⟩ ⊕ Tor0(I, k)S3

⟨(5,2,0)⟩
∼= k⊕ k

and

Tor1(I, k)S3 = Tor1(I, k)S3

⟨(5,2,1)⟩
∼= k,

which can be checked (based on Pieri’s rule) using the computations in Example 1.4: the trivial
S3-module S appears as a summand in Sπ if and only if each of the partitions in π has a single
row (in which case the multiplicity of S is one).

Remark 1.7. Theorem 4.1 implies that if ⟨λ1, . . . , λr⟩Sn has a linear resolution, then so does

(xλ1
, . . . , xλr

). A combinatorial characterization of Sn-invariant monomial ideals having a linear
resolution was given in [24]. These are exactly the symmetric shifted ideals (generated in a single
degree) defined in [4]. It follows that the unsymmetrizations of these ideals have a linear resolution.
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Theorem 1.3 gives a concrete recipe for computing the multigraded Betti numbers

βi,a(I) = dimTor i(I, k)a,
but in practice, the difficulty of the calculation depends on the complexity of evaluating the homology
of ∆µ,c. As shown by example in [21, Section 5], the numbers βi,a(I) may depend on the characteristic
of k. However, the shape of the Betti table, as measured by the Castelnuovo–Mumford regularity
reg(I), and by the projective dimension pdim(I), does not depend on char(k)! This was first shown
in [24], and in Section 5 we give an equivalent (but somewhat simpler) recipe for computing reg(I)
and pdim(I). We also extend the notion of extremal Betti numbers from [2] to our context, and
compute the extremal Betti numbers of I in Theorem 5.1.

The results of our work relate to the broader context of the study of finiteness properties of ideals
in an infinite polynomial ring, which are invariant under a large group of symmetries. A significant
body of research has been performed in recent years on finite generation statements, most often
under the designation Noetherianity up to symmetry or representation stability, and has had impor-
tant applications including two (of several) recent proofs of Stillman’s conjecture on the projective
dimension (and regularity) of polynomial ideals [9, 11]. In the case of the infinite polynomial ring
R∞ = k[x1, x2, · · · ], with the action of the infinite symmetric group S∞ by coordinate permutations,
ideals I∞ ⊆ R∞ that are S∞-invariant are generated by finitely many S∞-orbits (this is a classical
result due to Cohen [8], rediscovered more recently in [1, 16]). It is then natural to explore finiteness
beyond the set of generators, and to understand how it is reflected in other homological invariants.
To that end, we let f1, . . . , fr ∈ k[x1, . . . , xn] ⊂ R∞ be polynomials whose S∞-orbits generate I∞,
and consider the sequence of ideals

(1.9) Im = (σ(fi) | 1 ≤ i ≤ r, σ ∈ Sm) ⊆ k[x1, . . . , xm] for m ≥ n.

One can guess that the finiteness properties of I∞ are reflected by uniform behaviors of homological
invariants of the ideals Im. For instance, it is shown in [19, Corollary 3.12] that the (co)dimension
of the ideals Im is computed by a linear function when m ≫ 0, and it is conjectured in [19, Con-
jecture 1.3] that the same result is true for the projective dimension pdim(Im). Similarly, it is
conjectured in [18, Conjecture 1.1] that reg(Im) is a linear function when m ≫ 0. In the case when
f1, · · · , fr are monomials, the linearity of pdim(Im) and reg(Im) is established by the authors in [21,
Corollary 1.2] and [24, Theorem 6.1]. In Section 6, we extend these results to each of the Betti
numbers of the ideals Im, by providing a concrete recipe of how these numbers change as we vary m.
Exhibiting a uniform behavior for the Betti numbers of Im, when f1, · · · , fr are no longer assumed
to be monomials, remains a significant open problem, and we hope that our work will inspire further
investigations in this direction.

Organization. In Section 2 we introduce the necessary notation and preliminary results regarding
partitions, simplicial complexes, Betti numbers, Specht modules, and multidimensional chain com-
plexes. In Section 3 we prove Theorem 1.3, and in Section 4 we explain the proof of Theorem 1.5. In
Section 5 we discuss the primary decomposition, extremal Betti numbers, regularity and projective
dimension of Sn-invariant monomial ideals. Finally, in Section 6 we explain how the Betti numbers
change as we increase the number of variables.

2. Preliminaries

In this section, we introduce some basic notation which will be used in the paper.
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2.1. Some remarks on partitions and multidegrees. Let I be an Sn-invariant monomial ideal
of R. Recall that P (I) = {λ ∈ Pn | xλ ∈ I}. Since xa ∈ I if and only if part(a) ∈ P (I), the set P (I)
determines the ideal I. We regard Pn as a poset with the relation defined by (a1, . . . , an) ≥ (b1, . . . , bn)
if ai ≥ bi for all i = 1, 2, . . . , n. Let Λ(I) be the set of minimal elements in P (I). Identifying partitions
with the corresponding monomials in R, we have that up to the action of Sn, the set Λ(I) forms a
minimal set of generators of I: we have I = ⟨λ | λ ∈ Λ(I)⟩Sn and no proper subset of Λ(I) generates
I. In particular, λ ∈ Pn is contained in P (I) if and only if there is µ ∈ Λ(I) such that λ ≥ µ.
We sometimes regard a partition λ as an element of Zn. To avoid confusion, for a partition

λ = (λ1, . . . , λn), when we denote the graded component of a module M of degree (λ1, . . . , λn) ∈ Zn,
we write it asMλ instead ofMλ. Also, when we write partitions, we sometimes ignore “0” and identify
(λ1, . . . , λn) and (λ1, . . . , λn, 0, . . . , 0). For any a = (a1, · · · , an) ∈ Zn we write |a| = a1+a2+ · · ·+an
for the size of a.

We often consider both Zn and Zs. We write e1, . . . , es for the standard vectors of Zs and write
e1, . . . , en for the standard vectors of Zn. Also, for subsets F ⊂ [s] and G ⊂ [n], we write eF =

∑
i∈F ei

and eG =
∑

i∈G ei.

2.2. Simplicial complexes and their homology groups. A simplicial complex on a finite set V
is a collection ∆ of subsets of V satisfying the condition that F ∈ ∆ and G ⊂ F imply G ∈ ∆.
Elements of ∆ are called faces and maximal elements of ∆ are called facets. We distinguish the
empty simplicial complex ∅ from the simplicial complex {∅} consisting only of the empty face.
If ∆ is a simplicial complex on V = {v1, . . . , vn}, we write

C̃• : 0←− C−1(∆)
∂←− C0(∆)

∂←− C1(∆)
∂←− · · ·

for the (reduced) simplicial chain complex of ∆ over a field k. Here, each Ck(∆) is the k-vector space
spanned by the symbols {αF | F ∈ ∆, |F | = k + 1}. If we consider the total order v1 < · · · < vn on
V then the boundary map is given by

∂(αF ) =
∑
v∈F

ϵv(F ) · αF\{v}

where ϵv(F ) = (−1)|{u∈F |u≤v}|. The homology H̃i(∆) = Hi(C̃•(∆)) is called the i-th reduced homol-

ogy group of ∆. We note that H̃−1({∅}) ∼= k while H̃i(∅) = 0 for all i.

2.3. Betti numbers of monomial ideals. It is known that when I is a monomial ideal, the Zn-
graded components of Tor i(I, k) can be identified with reduced homology groups of certain simplicial
complexes. We quickly recall this fact.

Let I ⊂ R be a monomial ideal. Let KR
• = KR

• (x1, . . . , xn) be the Koszul complex w.r.t. the
variables x1, . . . , xn and K•(I) = KR

• (x1, . . . , xn)⊗R I. We have that KR
i is the free R-module whose

basis is the set {ea1 ∧ · · · ∧ eai | 1 ≤ a1 < · · · < ai ≤ n}, where ea1 ∧ · · · ∧ eai is an element of the
exterior algebra generated by e1, . . . , en. For a = (a1, . . . , an) ∈ Zn

≥0, we define the simplicial complex

∆I
a = {F ⊂ [n] | xa−eF ∈ I}.

One has an identification

K•(I)a ∼= C̃•+1(∆
I
a)

given by the correspondence xa−e{i1,...,ik}ei1∧· · ·∧eik → α{i1,...,ik}, for i1 < · · · < ik. Since Tor i(I, k) ∼=
Hi(K•(I)), we obtain the following formula.
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Theorem 2.1 ([7, Proposition 1.1]). For any monomial ideal I ⊂ S and a ∈ Zn
≥0,

Tor i(I, k)a ∼= H̃i−1(∆
I
a).

For square-free monomial ideals, the above formula coincides via Alexander duality with Hochster’s
formula (see [7, §1]).

2.4. Specht modules of hook partitions. Here we explain a few basic facts on Specht modules.
We only consider those modules for hook partitions since these are the only cases which we need.
We refer the readers to [17, 25] for a general theory.

A hook partition is a partition of the form (p, 1q) with p ≥ 1 and q ≥ 0. Let λ = (1 + t, 1s−1)
be a hook partition with s ≥ 1, t ≥ 0. A (Young) tableau of shape λ is an assignment of distinct
positive integers to each box in λ. We consider the following relation ∼ (extended linearly) on the
vector space spanned by tableaux of shape λ.

(I) For any permutation σ on [s] with σ(k) = pk and for any permutation τ on [t] with τ(k) = qk,
we have 

a1 b1 · · · bt
a2
...

as

 ∼ sgn(σ) ·


ap1 bq1 · · · bqt
ap2
...

aps

 .

(II) For any sequence of integers a0, a1, . . . , as, b2, . . . , bt, we have

s∑
i=0

(−1)i ·



a0 ai b2 · · · bt
...

ai−1

ai+1

...

as


∼ 0.

Let Tab(λ) be the set of tableaux of shape λ with entries 1, 2, . . . , s + t. The quotient space Sλ =
(spank(Tab(λ)))/ ∼ is called the Specht module of shape λ. We say that a tableau

a1 b1 · · · bt
a2...
as

is standard if a1 < · · · < as and a1 < b1 < · · · < bt. It is well-known that standard tableaux in
Tab(λ) form a basis of Sλ.

2.5. Multi-dimensional complexes. We define a Zs-complex of k-vector spaces to be a complex
(K•, ∂) where each term has a decomposition

(2.1) Kl =
⊕

c1+···+cs=l

K(c1,··· ,cs)
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and the differential ∂ sends

∂(K(c1,··· ,cs)) ⊆
s⊕

i=1

K(c1,··· ,ci−1,··· ,cs).

All our complexes are finite, that is, Kc ̸= 0 for finitely many c ∈ Zs, and the spaces Kc are finite
dimensional. We have a decomposition ∂ =

⊕
∂i
c with 1 ≤ i ≤ s and c ∈ Zs, where

∂i
c : Kc −→ Kc−ei ,

and the condition that ∂ is a differential translates into

∂i
c−ei
◦ ∂i

c = 0, and ∂j
c−ei ◦ ∂

i
c + ∂i

c−ej
◦ ∂j

c = 0 for i ̸= j.

We write ∂K and ∂K,i
c when we want to emphasize the complex that ∂ is a differential of. We define

a morphism of Zs-complexes f : K −→ K ′ to be a morphism of complexes which is compatible with
(2.1). Equivalently, for each c ∈ Zs we have a k-linear map fc : Kc −→ K ′

c, satisfying

∂K′,i
c ◦ fc = fc−ei ◦ ∂K,i

c for all 1 ≤ i ≤ s, c ∈ Zs.

We write coms for the category of Zs-complexes, identify com0 with the category vec of k-vector
spaces, and note that com1 is the usual category of complexes associated to vec. If we write E =∧•(∂1, · · · , ∂s) for the exterior algebra on ∂1, · · · , ∂s, then E has a Zs-grading with deg(∂i) = −ei,
and the notion of a Zs-complex is equivalent to that of a finitely generated Zs-graded E-module. We
will write grmodE for the category of such modules, and use freely the equivalence between coms and
grmodE.

We define the support of a Zs-complex to be the set

(2.2) supp(K) = {c ∈ Zs : Kc ̸= 0}.

For d ∈ Zs, we define the shifted complex K[d] by Kc = Kc+d, with differentials shifted accordingly.
We can think of a vector space W as a Zs-complex supported at (0s), and we write W [d] for the
corresponding shift (which is supported at −d).

Example 2.2. For a vector space W , we define the Zs-complex E = E(W ) by

Ec =

{
W if c ∈ {0, 1}s;
0 otherwise.

For c ∈ supp(E) with ci = 1, we define ∂i
c : W −→ W to be multiplication by (−1)c1+···+ci . It is

easy to see that E is an exact complex (isomorphic up to shift to the tensor product of W with
the reduced chain complex of a simplex). As an object of grmodE, E can be identified with the free
module W ⊗k E(−1s), with generators W in degree (1s). As such, E is a projective object of coms

(it is also injective by [10, Proposition 7.19]).

We define a Boolean Zs-complex to be a Zs-complex K which is isomorphic to E[d], where
d ∈ Zs and E is as in Example 2.2. This is equivalent to the fact that supp(K) = −d+ {0, 1}×n and
∂i
c : Kc −→ Kc−ei is an isomorphism whenever c, c−ei ∈ supp(K). Whenever we want to emphasize

the relation between the Boolean complex K and the reduced chain complex of a simplex, we will
write for each subset F ⊆ [s]

(2.3) KF = K−d+eF .
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It follows from Example 2.2 that Boolean complexes are projective (and injective) objects in coms,
which has the following useful consequence.

Corollary 2.3. Suppose that K is a Zs-complex with a filtration whose composition factors E1, · · · , Er

are Boolean Zs-complexes. We have that

K ≃ E1 ⊕ · · · ⊕ Er.

If K ∈ coms and L ∈ comt, then the (external) tensor product K ⊠L is defined to be the complex
in coms+t with

(K ⊠ L)c =
⊕

d+e=c

Kd ⊗k Le,

and differential

∂K⊠L
c (u⊗ v) = ∂K(u)⊗ v + (−1)|d|u⊗ ∂K(v) for u ∈ Kd, v ∈ Le.

We note that the complex in Example 2.2 is the tensor product of the Z-complex W ≃ W with
(s − 1) copies of the Z-complex k ≃ k. In general, the tensor product of a Boolean s-complex with
a Boolean t-complex is a Boolean (s+ t)-complex.

If F•(K) is an decreasing filtration of K by Zs-subcomplexes, we write

grk(K) = Fk(K)/Fk+1(K) and gr(K) =
⊕
k

grk(K).

Given filtrations F•(K), F•(L), we get an induced filtration on K ⊠ L, with

Fk(K ⊠ L) =
∑
i+j=k

F i(K)⊠ F j(L) and grk(K ⊠ L) =
⊕
i+j=k

gri(K)⊠ grj(L).

If G is a group, we will be interested more generally in the category comG
s of finite complexes

of finite k[G]-modules, or equivalently, the category grmodGE of finitely generated G-equivariant Zs-
graded E-modules, where the action of G on E is trivial. For s = 0, comG

0 is the category modG
of finite G-modules. If K ∈ comG

s and L ∈ comG′
t then K ⊠ L ∈ comG×G′

s+t , and the discussion of
filtrations is analogous in the equivariant setting.

Using the natural isomorphisms

Hom comG
s
(E(W ), K) ≃ HomgrmodGE

(W ⊗k E(−1s), K) ≃ HommodG(W,K(1s))

we can interpet the construction of the Boolean complex E(W ) in Example 2.2 as a functor E :
modG −→ comG

s which is left-adjoint to the functor P : comG
s −→ modG given by P (K) = K(1s).

Since P is exact, we have that E(W ) is projective whenever W is a projective G-module. When G
is a finite group and k has characteristic zero or coprime to |G|, we have that modG is semi-simple,
and in particular E(W ) is a projective object of comG

s for every G-module W . We get the following
equivariant version of Corollary 2.3:

Corollary 2.4. Suppose that G is a finite group, k is a field of characteristic zero or coprime to
|G|, and K ∈ comG

s has a filtration with composition factors Ei = E(Wi), where Wi ∈ modG, for
i = 1, . . . , r. We have that

K ≃ E1 ⊕ · · · ⊕ Er.
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We end this section by explaining how Corollaries 2.3 and 2.4 will be applied in our work. Suppose
that F ∈ comG

1 is an exact complex supported in non-negative degrees:

0←− F0
∂1←− F1 ←− · · ·

∂r←− Fr ←− 0.

We let Ul = Im(∂l+1) and Dl = Fl/Ul, so that ∂l establishes an isomorphism Dl ≃ Ul−1. We have a
natural filtration on F given by the canonical truncations

F l(F ) : 0←− Ul ←− Fl+1 ←− · · · ←− Fr−1 ←− Fr ←− 0,

with grl(F ) = (Dl+1 ≃ Ul) a Boolean Z-complex. By Corollary 2.3, we have an isomorphism
F ≃ gr(F ) in com1, which by Corollary 2.4 can be taken to be G-equivariant (that is, in comG

1 ) if
G is finite and k has characteristic zero or coprime to |G|. Choosing (not necessarily G-equivariant)
sections of the quotient maps Fl ↠ Dl, we can picture the complex F as:

U0 U1 U2 U3⊕ ⊕ ⊕
· · ·

D1

≃
∂1

ggNNNNNNNNNNN
D2

≃
∂2

ggNNNNNNNNNNNN
D3

≃
∂3

ggNNNNNNNNNNNN

More generally, if F i ∈ comGi
1 for i = 1, . . . , s, then the canonical filtrations on each F i induce a

filtration on the tensor product F = F 1 ⊠ · · ·⊠ F s ∈ comG
s , where G = G1 × · · · × Gs. We have an

isomorphism F ≃ gr(F ) in coms, and if G is finite and k has characteristic zero or coprime to |G|,
then F ≃ gr(F ) in comG

s .

3. Proof of the main theorem

The goal of this section is to prove Theorem 1.3. We first study the complex

(3.1) Kµ
• =

⊕
a∈Zn, part(a)=µ

(KR
• )a,

where µ ∈ Pn. We note that Kµ
• is a complex of Sn-modules, and using the notation in Section 2.5,

we will show that Kµ
• can be thought of as an object in comSn

s for an appropriate value of s, and
that Kµ

• has a natural filtration with composition factors that are Sn-equivariant Boolean complexes.
Based on the discussion in Section 2.5, this gives a decomposition of Kµ

• into a direct sum of Boolean
complexes, which is Sn-equivariant in characteristic zero or > n. This decomposition is then the key
ingredient in the proof of Theorem 1.3.

Step 1. Suppose that µ = (an) with a > 0. We have

Kµ
l = spank

{
σ
(
(xa−1

1 · · ·xa−1
l xa

l+1 · · ·xa
n) · (e1 ∧ · · · ∧ el)

)
| σ ∈ Sn

}
.

Since KR
• is exact except in degree (0n), it follows that Kµ

• is also exact. We can then define
Ul = Im(∂l+1) and Dl = Kµ

l /Ul as in Section 2.5, to get a filtration of Kµ
• by Boolean Sn-equivariant

complexes. To determine the isomorphism type of each Dl as an Sn-module, we note that it does
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not depend on a, and hence we can take a = 1. The natural map that associates

a1 b1 · · · bn−l

a2
...

al

−→ xb1 · · ·xbn−l
· ea1 ∧ · · · ∧ eal

induces an isomorphism between the Specht module S(n−l+1,1l−1) and Dl (the relations (I) correspond
to the skew-symmetric property of wedge products, while the relations (II) correspond to the gen-

erators ∂l+1(xb2 · · · xbn−l
ea0 ∧ · · · ∧ eal) of Ul). Using that Kµ

l ≃ IndSn
Sl×Sn−l

(
S(1l) ⊠ S(n−l)

)
(see [12,

Section 4]) we recover a special case of the filtrations in [17, § 16] known as Pieri’s rule: there is an
exact sequence

0 −→ S(n−l,1l) −→ IndSn
Sl×Sn−l

(
S(1l) ⊠ S(n−l)

)
−→ S(n−l+1,1l−1) −→ 0,

given by the inclusion of Ul ≃ Dl+1 into Kµ
l , followed by the projection onto Dl.

Step 2. We now consider the general case, when µ is of the form

µ = (µ1, . . . , µn) = (dp11 , . . . , dpss , 0ps+1) ∈ Pn,

where d1 > · · · > ds > 0. We set ds+1 = 0 and let

(3.2) Xk = {xi | µi = dk} and k[Xk] = k[xi : xi ∈ Xk], for k = 1, · · · , s+ 1,

noting that |Xk| = pk. By Step 1, we have that F k = (K
k[Xk]
• )(dpkk ) is an object in com

Spk
1 for

1 ≤ k ≤ s, which admits a filtration with composition factors

grl(F k) = (Dk
l+1 ≃ Uk

l ) = E(S(pk−l,1l))[−l] for 0 ≤ l ≤ pk − 1,

where

Uk
l ≃ S(pk−l,1l), Dk

l ≃ S(pk−l+1,1l−1).

We think of (K
k[Xs+1]
• )(0ps+1 ) = k as an object in com

Sps+1

0 , and represent it by the Specht module

S(ps+1). If we let Sp = Sp1 × · · · ×Sps ×Sps+1 then we have

(3.3) (KR
• )µ = F 1 ⊠ · · ·⊠ F s ⊠ S(ps+1) ∈ com

Sp

s .

For (0s) ≤ c = (c1, · · · , cs) ≤ (p1 − 1, · · · , ps − 1) we define

(3.4)
Eµ,c = grc1(F 1)⊠ · · ·⊠ grcs(F s)⊠ S(ps+1)

= E
(
S(p1−c1,1c1 ) ⊠ · · ·⊠ S(ps−cs,1cs ) ⊠ S(ps+1)

)
[−c] ∈ com

Sp

s .

Using (3.3) and the discussion in Section 2.5, we have that (KR
• )µ admits a filtration with composition

factors

grl(KR
• )µ =

⊕
|c|=l

Eµ,c, for 0 ≤ l ≤ (p1 − 1) + · · ·+ (ps − 1).
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Using (3.1), we have Kµ
• = IndSn

Sp
((KR

• )µ), and since induction is an exact functor, we have that Kµ
•

admits a filtration with

grl(Kµ
• ) =

⊕
|c|=l

IndSn
Sp

(Eµ,c) =
⊕
|c|=l

E
(
S((p1−c1,1c1 ),...,(ps−cs,1cs ),(ps+1))

)
[−c],

where the last equality uses (1.7), (3.4), and the fact the construction of Boolean complexes in
Example 2.2 commutes with induction. If we define

(3.5) Lµ,c
• = E

(
S((p1−c1,1c1 ),...,(ps−cs,1cs ),(ps+1))

)
[−c]

for (0s) ≤ c ≤ (p1 − 1, · · · , ps − 1), then based on Corollaries 2.3 and 2.4 we get a decomposition

(3.6) Kµ
• =

⊕
(0s)≤c≤(p1−1,··· ,ps−1)

Lµ,c
•

which is Sn-equivariant when k has characteristic zero or > n.
Before explaining the proof of Theorem 1.3, it will be useful to analyze an example in order to

illustrate the structure of Kµ
• .

Example 3.1. Suppose that n = 3 and µ = (5, 5, 1). We have s = 2, p1 = 2, p2 = 1, and p3 = 0.
Then Kµ

• is Z2-complex (see (2.1)) by (3.3), and using the Z2-grading on Kµ
• , we can picture the

complex as

(3.7)

Kµ
(2,0)

ttjjjj
jjj

Kµ
(1,0)

ttjjjj
jjj

Kµ
(2,1)

ttjjjj
jjj

jjTTTTTTT

Kµ
• : 0 Kµ

(0,0)
oo Kµ

(1,1)

jjTTTTTTT

ttjjjj
jjj

Kµ
(0,1)

jjTTTTTTT

From (3.6), we have a direct sum decomposition

Kµ
• = Lµ,(0,0)

• ⊕ Lµ,(1,0)
• ,

where the summands are Boolean complexes. Using (2.3), we refine (3.7) to

(3.8)

L
µ,(1,0)
{1}

wwooo
ooo

oo

L
µ,(1,0)
∅
⊕

L
µ,(0,0)
{1}

{{ww
ww
ww
ww
w

L
µ,(1,0)
{1,2}

{{ww
ww
ww
ww
w

ggNNNNNNNN

Kµ
• : 0 L

µ,(0,0)
∅

oo
L
µ,(1,0)
{2}
⊕

L
µ,(0,0)
{1,2}

ddIIIIIIII

wwooo
ooo

oo

L
µ,(0,0)
{2}

ffNNNNNNNN

where the blue terms come from L
µ,(0,0)
• , and the red ones from L

µ,(1,0)
• . Notice that Lµ,c

F is a summand

of Kµ
b if and only if b = c + eF . Each of the complexes L

µ,(0,0)
• and L

µ,(1,0)
• is isomorphic up to a
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shift to some number of copies of the reduced simplicial complex of a 1-dimensional simplex. As an
S3-representation, each of the blue modules is isomorphic to S((2),(1)), and each of the red modules
is isomorphic to S((1,1),(1)).

We are now ready to prove our main result.

Proof of Theorem 1.3. Recall that Tor i(I, k) can be computed as the i-th homology group of the
subcomplex of KR

• given by

K•(I) = KR
• ⊗R I.

If we fix µ ∈ Pn then Tor i(I, k)⟨µ⟩ is the homology of (K•(I))⟨µ⟩, which is a subcomplex of Kµ
• . We

will describe (K•(I))⟨µ⟩ in relation to the decomposition (3.6).

Consider any b ∈ supp(Kµ
• ) (as defined in (2.2)), and note that 0 ≤ bk ≤ pk for all k = 1, · · · , s.

Using the notation (1.5) and (3.2), we write

µ \ b = µ− eG1∪G2∪···∪Gs , for subsets Gk ⊆ Xk with |Gk| = bk.

We then have

(3.9) Kµ
b = spank

{
σ
(
xµ\b · eG1 ∧ · · · ∧ eGs

)
| σ ∈ Sn

}
,

where eG = eg1 ∧ · · · ∧ egm for G = {g1, · · · , gm} ⊆ [n]. Since KR
• (I) is the subcomplex of KR

• with

KR
l (I) = spank{xa · ei1 ∧ · · · ∧ eil | xa ∈ I, {i1, . . . , il} ⊆ [n]},

the equation (3.9) tells us that an element of Kµ
b appears in KR

• (I) if and only if µ \ b ∈ P (I), and
in that case the whole Kµ

b is contained in KR
• (I). This shows that

KR
l (I)⟨µ⟩ =

⊕
|b|=l

µ\b∈P (I)

Kµ
b .

Using (3.6) and the notation (2.3) as in Example 3.1, it follows that Lµ,c
F is a summand of KR

l (I)⟨µ⟩
if and only if µ \ (c + eF ) ∈ P (I), which by (1.6) is equivalent to F being a face of ∆µ,c(I). If we
consider the subcomplex Lµ,c

• (I) ⊆ Lµ,c
• defined by

Lµ,c
l+|c|(I) =

⊕
F∈∆µ,c(I),

|F |=l

Lµ,c
F ,

then it follows that

(3.10) (KR
• (I))⟨µ⟩ =

⊕
0≤c≤p(µ)

Lµ,c
• (I),

and moreover, we have from (3.5) that

(3.11) Lµ,c
• (I) ∼= C̃•+1+|c|(∆

µ,c(I))⊗k S((p1−c1,1c1 ),...,(ps−cs,1cs ),(ps+1)).

Combining (3.10) with (3.11) and taking homology yields the desired description of Tor i(I, k)⟨µ⟩,
concluding the proof. □

We end this section by illustrating the proof of Theorem 1.3 with an example.
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Example 3.2. We continue with the notation in Example 3.1, and consider the ideal I = ⟨(4, 1, 1), (5, 2, 0)⟩.
When considering the subcomplex (K•(I))⟨µ⟩ ⊆ Kµ

• , the term Kµ
(2,1) disappears since µ \ (2, 1) =

(4, 4, 0) ̸∈ P (I). We get from (3.8)

L
µ,(1,0)
{1} (I)

vvlll
lll

ll

L
µ,(1,0)
∅ (I)
⊕

L
µ,(0,0)
{1} (I)

yysss
sss

sss
s

Kµ
• (I) : 0 L

µ,(0,0)
∅ (I)oo

L
µ,(1,0)
{2} (I)

⊕
L
µ,(0,0)
{1,2} (I)

ffLLLLLLL

vvmmm
mmm

mm

L
µ,(0,0)
{2} (I)

hhQQQQQQQQQ

The red complex L
µ,(1,0)
• (I) is then the S3-module S((1,1),(1)) tensored with the reduced chain complex

of two points, while the blue complex L
µ,(0,0)
• (I) = Lµ,(0,0) remains acyclic. It follows as noted in the

introduction that

Tor i(I, k)⟨(5,5,1)⟩ =

{
S((1,1),(1)) if i = 2;

0 otherwise.

4. The Sn-invariant part of the Betti table

The goal of this section is to give a quick application of Theorem 1.3 and the Nerve Theorem,
computing the Sn-invariant part of Tor i(I, k) when I is an Sn-invariant monomial ideal, and k is a
field of characteristic zero or > n. More precisely, we show the following.

Theorem 4.1. Let λ1, . . . , λr ∈ Pn. Then, for any µ ∈ Pn, one has

γµ,0
i (⟨λ1, · · · , λr⟩Sn) = dimk Tor i((x

λ1

, · · · , xλr

),k)µ for all i.(4.1)

In particular, if char(k) = 0 or char(k) > n, then

Tor i
(
⟨λ1, · · · , λr⟩Sn ,k

)Sn ∼= Tor i
(
(xλ1

, · · · , xλr

), k
)

for all i.(4.2)

Proof. Let I = ⟨λ1, · · · , λr⟩Sn and J = (xλ1
, · · · , xλr

). For a subset Λ ⊂ Pn we define the partition
lcm(Λ) ∈ Pn by

lcm(Λ)i = max{λi | λ ∈ Λ}.
Also, for a subset G ⊆ [r] we write

lcm(G) = lcm({λi | i ∈ G}).
Consider the simplicial complex

X<µ = {G ⊆ [r] | lcm(G) < µ}.
It follows from [3, Theorem 1.11] (see also the proof of [13, Theorem 2.1]) that

Tor i(J,k)µ ∼= H̃i−1(X<µ).
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Then it follows that in order to prove (4.1), it suffices to show that the complexes ∆µ,0(I) and X<µ

are homotopy equivalent, which we do next.
If µ = (dp11 , . . . , dpss , 0ps+1) ∈ Pn with d1 > · · · > ds > 0, then we have

λ < µ⇐⇒ λ ≤ µ \ ei for some i = 1, · · · , s.
It follows that the facets of X<µ are

Gi = {j ∈ [r] | λj ≤ µ \ ei} for i = 1, · · · , s.
The Nerve Theorem (see for instance [5, Theorem 10.6]) implies that X<µ is homotopy equivalent to
the nerve of G1, · · · , Gs, which is the simplicial complex

N (G1, . . . , Gs) =

{
F ⊂ [s] |

⋂
i∈F

Gi ̸= ∅

}
.

We note that
⋂

i∈F Gi ̸= ∅ is equivalent to the fact that for some λj we have

λj ≤ µ \ ei for all i ∈ F.

This is further equivalent to λj ≤ µ \ eF , which shows that⋂
i∈F

Gi ̸= ∅⇐⇒ µ \ eF ∈ P (I).

It follows from (1.6) that N (G1, . . . , Gs) = ∆µ,0(I), so X<µ is homotopy equivalent to ∆µ,0(I),
proving (4.1).
We now assume that char(k) = 0 or char(k) > n and prove (4.2). Using the Taylor resolution

of J [15, §7.1], we have that if Tor i(J,k)a ̸= 0 for some a ∈ Zn
≥0 then a = lcm(Λ) for some subset

Λ ⊆ {λ1, . . . , λr}, and in particular a ∈ Pn. Thus, to prove (4.2), it is then enough to show that

Tor i(I, k)Sn

⟨µ⟩
∼= Tor i(J,k)µ for all µ ∈ Pn.

It follows from the Littlewood–Richardson rule (see e.g., [25, Theorem 4.9.14]) that(
S((p1,1q1 ),...,(ps,1qs ))

)Sn ∼=

{
k if q1 = · · · = qs = 0;

0 otherwise.

Thus Theorem 1.3 and (4.1) imply the desired isomorphism

Tor i(I, k)Sn

⟨µ⟩
∼= H̃i−1(∆

µ,0(I)) ∼= Tor i(J,k)µ. □

5. Primary decomposition and extremal Betti numbers

The goal of this section is to describe a primary decomposition for anySn-invariant monomial ideal
I, and to study the extremal Betti numbers of I. As an application, we recover using Theorem 1.3
the formulas from [24] for the Castelnuovo–Mumford regularity, and for the projective dimension
of I. To formulate our results, we consider the set of extended partitions

P∞
n = {(λ1, . . . , λn) ∈ (Z≥0 ∪ {∞})n | λ1 ≥ · · · ≥ λn ≥ 0}

where ∞ ≥ a for any a ∈ Z≥0 ∪ {∞}, for which a partial order is constructed in Section 5.3. In
Section 5.1 we determine a finite subset Λ∗(I) ⊂ P∞

n describing a natural primary decomposition
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of I, and refer to Λ∗(I) as the set of dual generators of I. If ρ = (∞p0 , dp11 , · · · , dpss ) ∈ P∞
n , with

∞ > d1 > · · · > ds ≥ 0, then we write

(5.1) ℓ(ρ) = p0

for the number of ∞ terms in ρ, and let

(5.2) ρ̃ = ((d1 + 1)p0+p1 , (d2 + 1)p2 , · · · , (ds + 1)ps).

In analogy with the multigraded version of extremal Betti numbers from [2, p. 507], we say that a
pair (i, λ) ∈ [n]× Pn is extremal in the Betti table of R/I if

(a) Tor i(R/I, k)⟨λ⟩ ̸= 0, and
(b) Torj(R/I, k)⟨µ⟩ = 0 for all j ≥ i and µ  λ with |µ| − j ≥ |λ| − i.

If (i, λ) is extremal, the extremal Betti number βi,λ(I) is dimk Tor i(R/I, k)λ (which is equal to
βi,σ·λ(I) for all σ ∈ Sn). The main result of this section is the following.

Theorem 5.1. For any Sn-invariant monomial ideal I, we have

{(i, λ) ∈ [n]× Pn | (i, λ) is an extremal pair in the Betti table of R/I}
= {(n− ℓ(ρ), ρ̃) | ρ ∈ Λ∗(I) is a maximal dual generator of I}.

Moreover, if (i, λ) is the extremal pair associated to ρ = (∞p0 , dp11 , · · · , dpss ), then the corresponding
extremal Betti number is βi,λ =

(
p0+p1−1

p0

)
.

We prove Theorem 5.1 in Section 5.4 using a reformulation of Theorem 1.3 via Alexander duality,
which is explained in Section 5.2. In Section 5.5 we discuss the relationship between our results and
the combinatorics used in [24], and explain the relation of Theorem 5.1 to the study of Ext modules.

5.1. Primary decompositions of Sn-invariant monomial ideals. We begin by recalling a
canonical primary decomposition for a monomial ideal [15, Lemma 3.1].

Lemma 5.2. Every monomial ideal I of R has a presentation

I = Q1 ∩Q2 ∩ · · · ∩Qr,(5.3)

where each Qi is an ideal of the form (xa1
i1
, . . . , xak

ik
). Moreover, such a presentation is unique if it is

irredundant, i.e., if none of the ideals Qi can be omitted from (5.3).

To describe the irredundant presentation (5.3) for an Sn-invariant monomial ideal, we define for
each µ = (∞, . . . ,∞, µk, . . . , µn) ∈ P∞

n with µk <∞, the ideal

Qµ =
⋂

σ∈Sn

σ(xµk+1
k , . . . , xµn+1

n ).

If I ⊂ R is an Sn-invariant monomial ideal, its irredundant presentation (5.3) is preserved by the
Sn-action. Therefore, if σ ∈ Sn then σ(Qk) = Ql for some 1 ≤ l ≤ r. This fact and Lemma 5.2
imply the following.

Lemma 5.3. Let I ⊂ R be an Sn-invariant monomial ideal. Then there are unique elements
µ1, · · · , µt ∈ P∞

n such that

I = Qµ1 ∩ · · · ∩Qµt(5.4)

and none of the ideals Qµk can be omitted in the above presentation.
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We call (5.4) the irredundant decomposition of I, and call µ1, . . . , µt the dual generators of I.
We write

(5.5) Λ∗(I) = {µ1, . . . , µt},

and note that the condition that (5.4) is irredundant implies that

(5.6) µi ̸≤ µj for 1 ≤ i ̸= j ≤ t.

Remark 5.4. If µ = (∞p0 , dp11 , . . . , dpmm ) with ∞ > d1 > · · · > dm ≥ 0, then

Qµ =
〈(
(d1 + 1)p0+1

)
,
(
(d2 + 1)p0+p1+1

)
, . . . ,

(
(dm + 1)p0+p1+···+pm−1+1

)〉
Sn

.

The ideals Qµ are therefore the Sn-invariant ideals generated by a set of rectangular partitions.
Combining the formula for Qµ with

⟨(dp11 , . . . , dpss )⟩Sn = ⟨(dp11 )⟩Sn ∩ ⟨(d
p1+p2
2 )⟩Sn ∩ · · · ∩ ⟨(dp1+p2+···+ps

s )⟩Sn

provides a way to compute the presentation (5.4). For example, we have

⟨(4, 1, 1), (5, 2, 0)⟩S3 = ⟨(4, 0, 0), (5, 2, 0)⟩S3 ∩ ⟨(1, 1, 1), (5, 2, 0)⟩S3

= ⟨(4, 0, 0)⟩S3 ∩ ⟨(1, 1, 1), (5, 0, 0)⟩S3 ∩ ⟨(1, 1, 1), (2, 2, 0)⟩S3

= Q(3,3,3) ∩Q(4,4,0) ∩Q(∞,1,0),

where for the first two equalities we used

⟨(4, 1, 1)⟩S3 = ⟨(4, 0, 0)⟩S3 ∩ ⟨(1, 1, 1)⟩S3 and ⟨(5, 2, 0)⟩S3 = ⟨(5, 0, 0)⟩S3 ∩ ⟨(2, 2, 0)⟩S3 .

We conclude that Λ∗(⟨(4, 1, 1), (5, 2, 0)⟩S3) = {(3, 3, 3), (4, 4, 0), (∞, 1, 0)}.

To shed more light on the set Λ∗(I), we define

O(I) = Pn \ P (I) = {λ ∈ Pn | xλ ̸∈ I},

which is the set of all partitions that are not in I. The irredundant decomposition (5.4) is related to
O(I) as follows. For µ = (∞, . . . ,∞, µk, . . . , µn) ∈ P∞

n , let

Oµ = {λ ∈ Pn | λ ≤ µ}.

One can check that

Oµ = O(Qµ),

hence Lemma 5.3 implies that for any Sn-invariant monomial ideal I ⊂ R, one has

O(I) =
⋃

µ∈Λ∗(I)

Oµ.(5.7)

Moreover, the decomposition (5.7) is irredundant (that is, no Oµ can be omitted).
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5.2. A reformulation of Theorem 1.3 via Alexander duality. With the notation in Section 3,
we define for µ = (dp11 , . . . , dpss , 0ps+1) and c ≤ p(µ) the simplicial complex

(5.8) Γµ,c(I) = {F ⊆ [s] | µ \ (c+ e[s]\F ) ∈ O(I)}.
In other words, Γµ,c(I) = {F ⊆ [s] | [s]\F ̸∈ ∆µ,c(I)}, that is, Γµ,c(I) is the Alexander dual of ∆µ,c.
We have by [6, Lemma 5.5.3] that

H̃i−2(∆
µ,c(I)) ∼= H̃s−i−1(Γ

µ,c(I)).

Using this isomorphism, Theorem 1.3 can be rewritten as follows.

Theorem 5.5. Let µ = (dp11 , . . . , dpss , 0ps+1) ∈ Pn and let I ⊂ R be an Sn-invariant monomial ideal.
We have an isomorphism of k-vector spaces

Tor i(R/I, k)⟨µ⟩ ∼=
⊕

0≤c≤p(µ)

(
S((p1−c1,1c1 ),...,(ps−cs,1cs ),(ps+1))

)dimk H̃s−i−1+|c|(Γ
µ,c(I))

,

which is in addition an isomorphism of Sn-modules when char(k) = 0 or char(k) > n.

5.3. Maximal dual generators. In what follows we introduce a partial order on the set of dual
generators Λ∗(I) in (5.5), and explain how the maximal elements of Λ∗(I) contribute to the Betti
numbers of R/I. For µ = (∞, . . . ,∞, µk, . . . , µn) ∈ P∞

n with µk ̸= ∞, we define ℓ(µ) = k − 1 as in
(5.1), define µ̃ as in (5.2), and let

µ+ = (µk + 1, . . . , µk + 1, µk, . . . , µn).

We note that µ+ is obtained from µ by replacing ∞ with µk + 1, and that

µ̃ = µ+ + ek + · · ·+ en.

We define the partial order ≼ on Λ∗(I) by µ ≼ ρ if

(5.9) µ̃ ≤ ρ̃ and ℓ(µ)− ℓ(ρ) ≤ |ρ̃| − |µ̃|.
Using the fact that

(5.10) |µ+| = |µ̃| − (n− ℓ(µ)),

we can rewrite the conditions (5.9) as

(5.11) µ̃ ≤ ρ̃ and |µ+| ≤ |ρ+|.
We write µ ≺ ρ if µ ≼ ρ and µ ̸= ρ. We let Λ∗

max(I) ⊆ Λ∗(I) denote the subset of maximal elements
with respect to ≼, and call them maximal dual generators of I.

Lemma 5.6. Let I be an Sn-invariant monomial ideal.

(i) If µ, ρ ∈ Λ∗(I) satisfy µ ≺ ρ then ℓ(µ) > ℓ(ρ).
(ii) If ρ ∈ Λ∗

max(I) then ρ+ ̸∈ Oµ for any µ ∈ Λ∗(I) \ {ρ}.

Proof. (i) Write µ = (∞, . . . ,∞, µk, . . . , µn) ≺ ρ = (∞, . . . ,∞, ρl, . . . , ρn), and suppose by contra-
diction that ℓ(µ) ≤ ℓ(ρ), or equivalently, that k ≤ l. The condition µ̃ ≤ ρ̃ implies µm ≤ ρm for all
l ≤ m ≤ n. Since for 1 ≤ m < l we have µm ≤ ∞ = ρm, this shows that µ ≤ ρ, contradicting (5.6).

(ii) Let µ = (∞, . . . ,∞, µk, . . . , µn), ρ = (∞, . . . ,∞, ρl, . . . , ρn), and suppose that ρ ∈ Λ∗
max(I) and

µ ∈ Λ∗(I) \ {ρ}. If µm < ρm for some l ≤ m ≤ n, then ρ+ ̸≤ µ, hence ρ+ ̸∈ Oµ, as desired. We may
therefore assume that µm ≥ ρm for all l ≤ m ≤ n. By (5.6) we have ρ ̸≤ µ, hence µl−1 ̸= ∞ and
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thus k < l. If µl−1 ≥ ρl + 1 then we have µ+ ≥ ρ+ and µ̃ ≥ ρ̃, which implies by (5.11) that µ ≻ ρ,
contradicting the maximality of ρ. It follows that µl−1 < ρl+1, so ρ+ ̸≤ µ, concluding the proof. □
Maximal dual generators have the following contributions to Betti numbers.

Lemma 5.7. Let ρ = (∞p0 , dp11 , . . . , dpss ) ∈ Λ∗
max(I), with ∞ > d1 > · · · > ds ≥ 0, and let c =

(p1 − 1, . . . , ps − 1). We have Γρ̃,c = {∅}, and

βn−ℓ(ρ),ρ̃(R/I) =

(
p0 + p1 − 1

p0

)
.

Proof. We observe that ρ̃ is as in (5.2), and

ρ̃ \ (c+ e[s]) =
(
(d1 + 1)p0 , dp11 , dp22 . . . , dpss

)
= ρ+.

Since ρ+ ≤ ρ, it follows from (5.7) that ρ+ ∈ O(I), so ∅ ∈ Γρ̃,c(I) by (5.8). To prove that Γρ̃,c = {∅},
it then suffices to check that {i} ̸∈ Γρ̃,c(I) for i ∈ [s].

We fix i ∈ [s] and note that

ρ̃ \ (c+ e[s]\{i}) = ρ+ + ek for some k > p0,

hence ρ̃ \ (c + e[s]\{i}) ̸∈ Oρ. Since ρ is maximal, we have by Lemma 5.6(ii) that ρ+ ̸∈ Oµ for all
µ ∈ Λ∗(I) with µ ̸= ρ. We get from (5.7) that ρ̃ \ (c + e[s]\{i}) ̸∈ O(I), hence {i} ̸∈ Γρ̃,c(I) by (5.8),
as desired.

If we let i = n− ℓ(ρ) = n− p0 and µ = ρ̃ in Theorem 5.5, then we have

s− i− 1 + |c| = s− (n− p0)− 1 + (n− p0 − s) = −1,
and

dimk H̃s−i−1+|c|(Γ
µ,c(I)) = dimk H̃−1({∅}) = 1.

It follows from Theorem 5.5 that

Torn−ℓ(ρ)(R/I, k)⟨ρ̃⟩ = S((p0+1,1p1−1),(1p2 ),··· ,(1ps ))

Restricting to the multidegree ρ̃, and using the fact that each of the Specht modules S(1pi ) has
dimension 1, it follows that

βn−ℓ(ρ),ρ̃(R/I) = dimk S
(p0+1,1p1−1) =

(
p0 + p1 − 1

p0

)
,

where the last equality follows from the Hook Length Formula [17, § 20] (or a direct count of the
standard tableaux in Tab((p0 + 1, 1p1−1))). □
Example 5.8. If we let I = ⟨(4, 1, 1), (5, 2, 0)⟩S3 , then as seen in Remark 5.4, we have Λ∗(I) =
{(3, 3, 3), (4, 4, 0), (∞, 1, 0)}. The maximal dual generators of I are then (3, 3, 3) and (4, 4, 0). Since
ℓ((3, 3, 3)) = ℓ((4, 4, 0)) = 0, Lemma 5.7 implies that they contribute to Tor3(R/I, k)⟨(4,4,4)⟩ and
Tor3(R/I, k)⟨(5,5,1)⟩ respectively. More precisely, we have

β3,(4,4,4)(R/I) = β3,(5,5,1)(R/I) = 1,

and
Tor3(R/I, k)⟨(4,4,4)⟩ = Tor3(R/I, k)(4,4,4)

is 1-dimensional, while

Tor3(R/I, k)⟨(5,5,1)⟩ = Tor3(R/I, k)(5,5,1) ⊕ Tor3(R/I, k)(5,1,5) ⊕ Tor3(R/I, k)(1,5,5)
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is 3-dimensional (see Example 1.4). We note that (3, (4, 4, 4)) and (3, (5, 5, 1)) are all the extremal
pairs in the Betti table of R/I.

5.4. Extremal Betti numbers, regularity and projective dimension. Our next goal is to give
a proof of Theorem 5.1, and to derive formulas for the regularity and projective dimension of an
Sn-invariant monomial ideal I. We begin by establishing some preliminary results.

We say that a simplicial complex ∆ is a cone with apex v if for every face F ∈ ∆, one has

F ∪ {v} ∈ ∆. If ∆ is a cone then it is contractible, and H̃i(∆) = 0 for all i. We will need the
following slight generalization of this fact.

Lemma 5.9. If ∆ is a simplicial complex on the set [n], with H̃i−1(∆) ̸= 0, then there exists a facet
F of ∆ with 1 ̸∈ F and |F | ≥ i.

Proof. Let ∆′ be the simplicial complex whose facets are the facets of ∆ of dimension ≥ (i−1). Since

∆′ and ∆ have the same faces of dimension ≥ (i− 1), it follows that H̃i−1(∆
′) ∼= H̃i−1(∆) ̸= 0, and

in particular ∆′ is not a cone with apex 1. We get that ∆′ contains a facet F with 1 ̸∈ F , which is
then a facet of ∆ with |F | ≥ i. □
We next record two more technical statements before proving Theorem 5.1.

Lemma 5.10. Let µ = (dp11 , . . . , dpss , 0ps+1), and define p(µ) as in (1.4), and Γµ,c(I) as in (5.8), for
some c ≤ p(µ). If F is a facet of Γµ,c(I) with 1 ̸∈ F , we let

µ′ = µ \ (c+ e[s]\F ) = (µ′
1, . . . , µ

′
n),

and define
h = min{i | µ′

i ̸= µ1}.
If ρ = (∞, . . . ,∞, ρl, . . . , ρn) ∈ Λ∗(I) with ρl ̸=∞ and µ′ ≤ ρ, then we have h ≥ l and µ1 ≤ ρl + 1.

Proof. Since 1 ̸∈ F , the first entry of c+ e[s]\F is positive. By (1.5), we have

µ′
h + 1 = µh = µ1.

If h < l then ρh =∞, and using µ′ ≤ ρ we obtain

µ \ (c+ e[s]\(F∪{1})) = µ \ (c+ e[s]\F − e1) = µ′ + eh ≤ ρ.

This shows that µ \ (c + e[s]\(F∪{1})) ∈ Oρ ⊂ O(I), so F ∪ {1} ∈ Γµ,c(I) by (5.8), contradicting the
fact that F was a facet. It follows that h ≥ l, and since µ′ ≤ ρ, we have µ′

h ≤ µ′
l ≤ ρl. We get

µ1 = µ′
h + 1 ≤ ρl + 1, concluding the proof. □

For the next result we recall the definition of s(µ) from (1.4).

Lemma 5.11. If H̃i−1(Γ
µ,c(I)) ̸= 0 for some µ ∈ Pn and c ≤ p(µ), then there exists ρ ∈ Λ∗

max(I)
such that

(i) |c|+ s(µ)− i ≤ n− ℓ(ρ),
(ii) |µ| − (|c|+ s(µ)− i) ≤ |ρ+|, and
(iii) µ ≤ ρ̃.

Proof. We note that each of n− ℓ(ρ), |ρ+|, ρ̃, increases as ρ increases with respect to the order ≼ by
Lemma 5.6(i). It follows that it is enough to find ρ ∈ Λ∗(I) satisfying (i)–(iii).
By Lemma 5.9, there is a facet F of Γµ,c(I) such that 1 ̸∈ F and |F | ≥ i. We let µ =

(dp11 , . . . , dpss , 0ps+1), so that s = s(µ), and define µ′ and h as in Lemma 5.10. Since F ∈ Γµ,c(I),
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we have µ′ ∈ O(I), so there exists an element ρ ∈ Λ∗(I) such that µ′ ≤ ρ. We prove that ρ satisfies
conditions (i)–(iii).

We first note that h = p1 − c1, and that n = p1 + · · · + ps + ps+1. Combining these observations
with the assumption c ≤ p(µ), we get

n− |c+ e[s]| ≥
s∑

j=1

(pj − cj − 1) ≥ p1 − c1 − 1 = h− 1.

Since µ′ ≤ ρ, we know from Lemma 5.10 that h ≥ ℓ(ρ) + 1, so

|c|+ s− i ≤ |c+ e[s]| ≤ n− (h− 1) ≤ n− ℓ(ρ),

proving (i). The conclusion of Lemma 5.10 implies that µ′ ≤ ρ+, hence

|µ| − (|c|+ s− |F |) = |µ′| ≤ |ρ+|,

which proves (ii). Finally, if we write ρ = (∞, . . . ,∞, ρl, . . . , ρn) with ρl ̸= ∞, then Lemma 5.10
implies

µl−1 ≤ · · · ≤ µ1 ≤ ρl + 1 = ρ̃1 = · · · = ρ̃l−1.

Moreover, since µ′ ≤ ρ, we get

µm ≤ µ′
m + 1 ≤ ρm + 1 = ρ̃m for l ≤ m ≤ n.

This shows that µ ≤ ρ̃, proving (iii) and concluding our argument. □

We are now in the position to prove the main result of the section.

Proof of Theorem 5.1. We know from Lemma 5.7 that for each ρ ∈ Λ∗
max(I) we have

Torn−ℓ(ρ)(R/I, k)⟨ρ̃⟩ ̸= 0.

To prove that every extremal pair for R/I is of the form (n − ℓ(ρ), ρ̃), ρ ∈ Λ∗
max(I), it then suffices

to check that for every pair (j, µ) with Torj(R/I, k)⟨µ⟩ ̸= 0, there exists ρ ∈ Λ∗
max(I) such that

(5.12) j ≤ n− ℓ(ρ), µ ≤ ρ̃ and |µ| − j ≤ |ρ̃| − (n− ℓ(ρ)).

By Theorem 5.5, Torj(R/I, k)⟨µ⟩ ̸= 0 implies that there is a c ≤ p(µ) such that

H̃s(µ)−j−1+|c|(Γ
µ,c(I)) ̸= 0.

We apply Lemma 5.11 with i = s(µ) + |c| − j to find ρ ∈ Λ∗
max(I) satisfying

j = |c|+ s(µ)− i ≤ n− ℓ(ρ), |µ| − j = |µ| − (|c|+ s(µ)− i) ≤ |ρ+|, and µ ≤ ρ̃.

Using the identity (5.10), these conditions are precisely the ones from (5.12).
To conclude, we have to check that every pair (n− ℓ(ρ), ρ̃), with ρ ∈ Λ∗

max(I), is extremal. Equiva-
lently, we have to show that if (5.12) holds for (j, µ) = (n− ℓ(ρ′), ρ̃′) with ρ′ ∈ Λ∗

max(I), then ρ = ρ′.
Indeed, in this case we can rewrite (5.12) as

l(ρ) ≤ l(ρ′), ρ̃′ ≤ ρ̃, and l(ρ′)− l(ρ) ≤ |ρ̃| − |ρ̃′|,

which implies ρ′ ≼ ρ. Since ρ, ρ′ ∈ Λ∗
max(I), we must have ρ′ = ρ, as desired. □
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For a quick application of Theorem 5.1, recall that for a homogeneous ideal I ⊂ R, the (Castelnuovo–
Mumford) regularity of R/I is

reg(R/I) = max{j − i | Tor i(R/I, k)j ̸= 0}

and the projective dimension of R/I is

pd(R/I) = max{i | Tor i(R/I, k) ̸= 0}.

It follows that the extremal pairs in the Betti table of R/I determine regularity and projective
dimension, and we get the following.

Corollary 5.12. If I ⊂ R is an Sn-invariant monomial ideal then

(i) reg(R/I) = max{|µ+| | µ ∈ Λ∗(I)}.
(ii) pd(R/I) = max{n− ℓ(µ) | µ ∈ Λ∗(I)}.

Proof. For µ, ρ ∈ Λ∗(I), the condition µ ≼ ρ implies that ℓ(µ) ≥ ℓ(ρ) by Lemma 5.6, and it implies
|µ+| ≤ |ρ+| by (5.11). It follows that the right side of the equations (i) and (ii) only depends on the
maximal dual generators. The conclusion then follows by combining Theorem 5.1 with (5.10). □

5.5. Extremal Betti numbers via Ext modules. The goal of this section is to explain how the
extremal pairs and the extremal Betti numbers for R/I can be recovered from the structure of the
modules Ext•(R/I,R). Using results from [24], which determine the structure of Ext i(I, R) for any
Sn-invariant monomial ideal, we then give an alternative proof of Theorem 5.1, and we show how
Corollary 5.12 is equivalent to [24, (1.3)].

In analogy with the notion of extremal pair from the beginning of Section 5, we say that a pair
(i, λ) ∈ [n]× Pn is Ext-extremal if

(a) Ext i(R/I,R)⟨−λ⟩ ̸= 0, and
(b) Extj(R/I,R)⟨−µ⟩ = 0 for all j ≥ i and µ  λ with |µ| − j ≥ |λ| − i.

We first show that the Ext-extremal pairs coincide with the extremal pairs, and moreover that the
extremal Betti numbers can be computed via Ext modules as follows.

Proposition 5.13. We have that (i, λ) ∈ [n] × Pn is extremal if and only if it is Ext-extremal.
Moreover, for an extremal pair (i, λ) we have

(5.13) βi,λ = dimk Ext
i(R/I,R)−λ.

Proposition 5.13 is a natural extension of the corresponding result in the standard-graded setting
(see for instance [2, Proposition 1.1]). When I is a square-free monomial ideal (not necessarily Sn-
invariant), it follows from [22, Theorem 3.3] or [27, Theorem 2.6] that the multigraded components of
Ext i(R/I,R) can be computed as Betti numbers of the Alexander dual I∨, in which case the equality
(5.13) is equivalent to the one proved in [2, Theorem 2.8].
To prove Proposition 5.13, we first establish a preliminary result. We write F• for the minimal free

resolution of R/I, so that

Fi =
⊕
c∈Zn

R(−c)βi,c .

We let F∨
• = HomR(F•, R) be the dual of F•, so that Ext i(R/I,R) is the i-th cohomology module of

F∨
• . We write ∂i : F∨

i −→ F∨
i+1 for the differentials in F∨

• .
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Lemma 5.14. If Ext i(R/I,R)−λ ̸= 0 then there exist k ≥ 0 and µ ≥ λ, such that |µ| − |λ| ≥ k
and F∨

i+k has a minimal generator m of degree −µ, with ∂i+k(m) = 0. In particular, we have
Ext i+k(R/I,R)−µ ̸= 0, and if (i, λ) is Ext-extremal, then every non-zero class in Ext i(R/I,R)−λ is
represented by a minimal generator of F∨

i .

Proof. By hypothesis, there exists fi ∈ ker(∂i) with deg(fi) = −λ, representing a non-zero element
of Ext i(R/I,R)−λ. For j ≥ 0 and for as long as 0 ̸= fi+j ∈ F∨

i+j, we choose mi+j to be a minimal

generator of F∨
i+j of degree −µj ≤ − deg(fi+j), and set fi+j+1 = ∂i+j(mi+j). Since F∨

• is a finite
complex, this process ends after finitely many steps with a minimal generator mi+k of F

∨
i+k, satisfying

∂i+k(mi+k) = 0. We take m = mi+k and show that µ = µk satisfies µ ≥ λ and |µ| − |λ| ≥ k.
We note that for each j = 0, · · · , k − 1, deg(fi+j+1) = deg(mi+j) = −µj, since the differential

∂i+j is degree-preserving. Moreover, since ∂i+j is minimal, it follows that fi+j+1 is not a minimal
generator of F∨

i+j+1, hence −µj+1 < −µj for j = 0, · · · , k − 1. Starting with λ = deg(fi), we get

λ ≤ µ0 < µ1 < · · · < µk = µ,

which implies µ ≥ λ and |µ| − |λ| ≥ k, as desired.
Since m is a minimal generator of F∨

i+k, m is not a boundary, so it represents a non-zero element
of Ext i+k(R/I,R)−µ. If (i, λ) is Ext-extremal, this is only possible if µ = λ and k = 0. If fi was
not a minimal generator of F∨

i , then one can choose mi to be a minimal generator of F∨
i of degree

−µ0 < −λ, and the construction above yields a pair (i + k, µ) with Ext i+k(R/I,R)−µ ̸= 0 and
|µ| − |λ| ≥ k, contradicting the fact that (i, λ) was Ext-extremal, and concluding our proof. □
Proof of Proposition 5.13. Suppose first that (i, λ) is an extremal pair, so Fi has a minimal generator
of degree λ, and there is no pair (j, µ) with |µ| − j ≥ |λ| − i such that Fj has a minimal generator
of degree µ. We show that every non-zero element m ∈ F∨

i with deg(m) = −λ represents a non-
zero class in Ext i(R/I,R)−λ. Indeed, we know that m is not a boundary, since ∂i−1 is minimal.
Let f = ∂i(m), and suppose by contradiction that f ̸= 0. Since deg(f) = deg(m) = −λ and ∂i

is minimal, there exists a minimal generator of F∨
i+1 of degree −µ < −λ. This corresponds to a

generator of Fi+1 of degree µ > λ. This contradicts the fact that (i, λ) was extremal, since it implies
|µ| − (i+1) ≥ |λ| − i. It follows that ∂i(m) = 0, so m represents a non-zero class in Ext i(R/I,R)−λ,
as desired. By Lemma 5.14, every non-zero class in Ext i(R/I,R)−λ arises in this way, so (5.13) holds.
To show that (i, λ) is Ext-extremal, suppose by contradiction that there exists a pair (j, µ) with

µ  λ, |µ| − j ≥ |λ| − i, and Extj(R/I,R)−µ ̸= 0. Applying Lemma 5.14 to (j, λ), we can find k ≥ 0
and δ ≥ µ with |δ| ≥ |µ|+ k, and such that F∨

j+k has a minimal generator of degree −δ. This shows
that Fj+k has a minimal generator of degree δ, where

|δ| − (j + k) ≥ |µ| − j ≥ |λ| − i,

contradicting the fact that (i, λ) was extremal.
Suppose now that (i, λ) is Ext-extremal. By Lemma 5.14, F∨

i has a minimal generator of degree
−λ, so Tor i(R/I, k)λ ̸= 0. Suppose by contradiction that there exists a pair (j, µ) that satisfies µ  λ,
|µ| − j ≥ |λ| − i, and Torj(R/I, k)µ ̸= 0. We consider one such pair for which j is maximal, and let
m denote a minimal generator of F∨

j of degree −µ. If ∂j(m) = 0 then m represents a non-zero class

in Extj(R/I,R)−µ (since it is not a boundary), contradicting the fact that (i, λ) was Ext-extremal.
If ∂j(m) = f ̸= 0 then there exists a minimal generator of F∨

j+1 of degree −δ < −µ. It follows that
δ > µ  λ,

|δ| − (j + 1) ≥ |µ| − j ≥ |λ| − i,
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and Torj+1(R/I, k)δ ̸= 0, so the pair (j + 1, δ) contradicts the maximality of (j, µ), which concludes
our proof. □

In order to apply Proposition 5.13, we recall some of the results and notation from [24]. Let
z = (z1, . . . , zn) ∈ Pn and l ≥ 0, with z1 = · · · = zl+1. We define the module Jz,l by (see [24, (2.5)])

(5.14) Jz,l = ⟨z⟩Sn/⟨λ | λ ≥ z and λi > zi for some i > l⟩Sn .

(A) In [24, Corollary 2.13] it was shown that Jz,l is a Cohen–Macaulay R-module of dimension l
with an explicit description of Extn−l(Jz,l, R).

(B) In [24, Main theorem] it was shown that for any Sn-invariant monomial ideal I ⊆ R, there
is a finite set Z(I) ⊂ Pn × Z (with the notation in [24, Definition 1.1], Z(I) = Z(P (I)))
such that there exists a filtration of R/I whose composition factors are the modules Jz,l with
(z, l) ∈ Z(I) and

Ext i(R/I,R) ∼=
⊕

(z,l)∈Z(I)

Ext i(Jz,l, R).

We do not recall here the definition of Z(I), nor do we recall the description of Extn−l(Jz,l, R),
since they are somewhat technical. We only record the following property which follows from [24,
Corollary 2.13]. If we define

(5.15) µ(z, l) = (∞l, zl+1, · · · , zn) ∈ P∞
n

then we have

(C) If z = (z1, . . . , zn) with z1 = · · · = zp > zp+1 for some p > l, then

λ = z + (1n) = (z1 + 1, · · · , zn + 1) = µ̃(z, l)

is the unique minimal element in the set {λ ∈ Pn | Extn−l(Jz,l, R)−λ ̸= 0}. Moreover

dimk Ext
n−l(Jz,l, R)−λ =

(
p−1
l

)
.

We explain a relation between the set Z(I) and dual generators. Let

Λ(Jz,l) = {λ ∈ Pn | (Jz,l)λ ̸= 0} (5.14)
= {λ ∈ Pn | λ ≥ z, λi = zi for i ≥ l + 1}.

Since Jz,l are composition factors of R/I, we have a partition O(I) =
⊎

(z,l)∈Z(I) Λ(z, l). This allows
us to write

O(I) =
⋃

(z,l)∈Z(I)

Oµ(z,l),

but this representation of O(I) is highly redundant.
In analogy with Λ∗(I), we define the set of dual pairs

(5.16) Z∗(I) = {(z, l) ∈ Z(I) | µ(z, l) ̸≤ µ(y, u) for (z, l) ̸= (y, u) ∈ Z(I)}.

We get an irredundant decomposition

O(I) =
⋃

(z,l)∈Z∗(I)

Oµ(z,l),

and the formula (5.15) defines a bijection Z∗(I) −→ Λ∗(I).
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Example 5.15. If I = ⟨(4, 1, 1), (5, 2, 0)⟩S3 as in Remark 5.4 then we have

Z(I) =


((0, 0, 0), 1), ((1, 1, 0), 1),
((2, 2, 0), 0), ((3, 2, 0), 0), ((4, 2, 0), 0), ((3, 3, 0), 0), ((4, 3, 0), 0), ((4, 4, 0), 0),
((1, 1, 1), 0), ((2, 1, 1), 0), ((3, 1, 1), 0), ((2, 2, 1), 0), ((3, 2, 1), 0), ((3, 3, 1), 0),
((2, 2, 2), 0), ((3, 2, 2), 0), ((3, 3, 2), 0), ((3, 3, 3), 0)

 .

The (significantly smaller) subset of dual pairs is

Z∗(I) = {((1, 1, 0), 1), ((4, 4, 0), 0), ((3, 3, 3), 0)},

corresponding to the dual generators of I

µ((1, 1, 0), 1) = (∞, 1, 0), µ((4, 4, 0), 0) = (4, 4, 0), µ((3, 3, 3), 0) = (3, 3, 3).

To give another perspective on Z∗(I), we introduce a partial order on Z(I) by

(z, l) ≤ (y, u)⇐⇒ l = u and z ≤ y.

We have that (z, l), (y, u) are incomparable if l ̸= u, and (z, l) ≤ (y, l) if and only if µ(z, l) ≤
µ(y, l). For the proof of the next result, we assume that the reader has some familiarity with [24,
Definition 1.1] and its implications, such as [24, Remark 2.3] (in particular, we use some notation
from [24] which is not defined in this paper).

Lemma 5.16. We have that

Z∗(I) = {maximal elements of Z(I) with respect to ≤}.

Proof. For the inclusion “⊆”, let (z, l) ∈ Z∗(I), and suppose by contradiction that there exists
(y, l) ∈ Z(I) with (y, l) > (z, l). This implies that µ(y, l) > µ(z, l), contradicting (5.16).
For the reverse inclusion “⊇”, let (z, l) ∈ Z(I) be maximal with respect to ≤, and suppose by

contradiction that (z, l) ̸∈ Z∗(I). By (5.16), there exists (y, u) ∈ Z(I) with µ(z, l) < µ(y, u), which
implies l ≤ u. Moreover, if l = u then z < y, contradicting the maximality of (z, l). We thus have

(5.17) l < u and zi ≤ yi for i ≥ u+ 1.

We write c = z1 and d = y1, and note that there exists x ∈ X (I) such that x(c) ≤ z and x′
c+1 ≤ l+1.

In particular, we must have xi ≤ c for all i > l + 1 (hence for i ≥ u + 1). Suppose first that c ≤ d.
The condition x(c) ≤ z implies that xi = min(xi, c) ≤ zi for i ≥ u + 1, which combined with (5.17)
implies that xi ≤ yi for i ≥ u + 1. Since yi = d for i ≤ u + 1, this shows that x(d) ≤ y. Since
(y, u) ∈ Z(I), this forces x′

d+1 ≥ u+ 1, which contradicts (5.17) since it implies

u+ 1 ≤ x′
d+1 ≤ x′

c+1 ≤ l + 1.

Suppose now that c > d. We have that zi ≤ yi ≤ d < c for i ≥ u+ 1, which combined with x(c) ≤ z
implies that xi ≤ zi for i ≥ u+1. Using (5.17), this shows that xi ≤ yi for i ≥ u+1, hence x(d) ≤ y.
Since (y, u) ∈ Z(I), we must have x′

d+1 ≥ u+ 1, hence

xu+1 ≥ d+ 1 > yu+1 ≥ zu+1.

Since x(c) ≤ z, this forces zu+1 = c. The above inequality implies d + 1 > zu+1 = c, contradicting
the fact that d < c and concluding the proof. □
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We can now explain how Corollary 5.12 is equivalent to the formulas [24, (1.3)], which assert that

reg(R/I) = max{|z|+ l | (z, l) ∈ Z(I)}, pdim(R/I) = max{n− l | (z, l) ∈ Z(I)}.
Indeed, it follows from Lemma 5.16 that for every (z, l) ∈ Z(I) there exists (y, l) ∈ Z(I) with y ≥ z
(and hence |y| ≥ |z|), which then implies that

reg(R/I) = max{|z|+ l | (z, l) ∈ Z∗(I)}, pdim(R/I) = max{n− l | (z, l) ∈ Z∗(I)}.
Using the fact that if µ = µ(z, l) then |µ+| = |z| + l and ℓ(µ) = l, this shows that Corollary 5.12 is
equivalent to the above formulas.

We conclude this section with an alternative proof of Theorem 5.1. To that end, we consider the
ordering on Z∗(I) induced by the bijection with Λ∗(I). We have

(5.18) (z, l) ≼ (y, u)⇐⇒ z ≤ y and |z|+ l ≤ |y|+ u.

Alternative proof of Theorem 5.1. It follows from (B), (C) and (5.18) that (i, λ) is extremal if and

only if there exists a maximal (z, l) ∈ Z∗(I) with respect to ≼ such that i = n − l and λ = µ̃(z, l).
Since this is equivalent to the fact that µ(z, l) ∈ Λ∗

max(I), and since ℓ(µ(z, l)) = l, this recovers the
desired description of the extremal pairs.

Suppose that (i, λ) is an extremal pair with (i, λ) = (n − l, µ̃(z, l)). If p is the unique interger
satisfying z1 = · · · = zp > zp+1, then we have using Proposition 5.13 and (C) that

(5.19) βi,λ = dimk Ext
i(Jz,l, R)−λ =

(
p− 1

l

)
.

If µ(z, l) = (∞p0 , dp11 , · · · , dpss ) with ∞ > d1 > · · · > ds ≥ 0 (as in Lemma 5.7), then we have l = p0
and p = p0 + p1. This means that (5.19) agrees with the formula for the extremal Betti numbers
from Lemma 5.7, concluding our proof. □

6. Varying the number of variables

In this section, we study how the multigraded Betti numbers of the ideals Im (defined in (1.9))
vary with m, when f1, · · · , fr are assumed to be monomials. This extends a result of the first author
from [21], that gives a simple recipe to determine for all m ≥ n all the multidegrees µ ∈ Pm for which
Tor i(Im,k)⟨µ⟩ is non-zero. The recipe requires knowing the set

{(i, λ) ∈ {0, 1, . . . , n− 1} × Pn | Tor i(In,k)⟨λ⟩ ̸= 0},
and is summarized in Theorem 6.1 below. The goal of this section is to explain how using Theorem 1.3
we can determine not only which of the multigraded Betti numbers are non-zero, but to also compute
them explicitly, and to describe the Sm-module structure of Tor i(Im, k)⟨µ⟩ for all m ≥ n and all
µ ∈ Pm. This is explained in Theorem 6.2, but before going into details we make some preliminary
conventions.

Throughout this section, we identify (a1, . . . , an) ∈ Pn and (a1, . . . , an, 0
m−n) ∈ Pm for m ≥ n.

By this identification, if λ1, . . . , λr ∈ Pn, we can regard them as elements of Pm with m ≥ n, and
consider the ideals

Im = ⟨λ1, . . . , λr⟩Sm ⊂ k[x1, . . . , xm].

The (non-)vanishing of the multigraded Betti numbers of Im is characterized by the following theorem
of the first author (see [21, Theorem 3.2]).
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Theorem 6.1. Let λ1, . . . , λr ∈ Pn and let Im = ⟨λ1, . . . , λr⟩Sm for m ∈ {n, n+1}. For any 0 ≤ i ≤ n
and µ = (µ1, . . . , µn, µn+1) ∈ Pn+1, one has

(i) if µn+1 = 0 then Tor i(In+1,k)µ ̸= 0 if and only if Tor i(In,k)(µ1,...,µn) ̸= 0,
(ii) if 0 < µn+1 < µn then Tor i(In+1,k)µ = 0,
(iii) if µn+1 = µn, then Tor i(In+1,k)µ ̸= 0 if and only if Tor i−1(In, k)(µ1,...,µn) ≠ 0.

To analyze the dimensions of the non-vanishing Tor groups in Theorem 6.1, recall that for an
Sn-invariant monomial ideal I ⊂ k[x1, . . . , xn], the numbers γµ,c

i (I) determine all the (multigraded)
Betti numbers of I. In order to determine the Betti numbers for Im when m ≥ n, it is then enough to
understand how each γµ,c

i (Im) changes when m increases. This is explained by the following simple
rule.

Theorem 6.2. Let λ1, . . . , λr ∈ Pn and Im = ⟨λ1, . . . , λr⟩Sm for m ∈ {n, n + 1}. Let µ =
(µ1, . . . , µn, µn+1) ∈ Pn+1, s = s(µ) and c ≤ p(µ). For every 0 ≤ i ≤ n, we have

(i) if µn+1 = 0, then γµ,c
i (In+1) = γ

(µ1,...,µn),c
i (In),

(ii) if µn+1 > 0, then

γµ,c
i (In+1) =

{
0 if cs = 0;

γ
(µ1,...,µn),c−es
i if cs > 0.

We note that Theorem 6.1 can be recovered from Theorem 6.2 using Theorem 1.3. If µn+1 > µn

then cs = 0, so Theorem 6.1(ii) follows from Theorem 6.2(ii).

Proof. We first observe that for any ρ = (ρ1, . . . , ρn, ρn+1) ∈ Pn+1, one has

ρ ∈ P (In+1)⇐⇒ (ρ1, . . . , ρn) ∈ P (In)(6.1)

since both conditions in (6.1) are equivalent to the condition that ρ ≥ λk for some k. Throughout
the proof we will write µ̂ = (µ1, . . . , µn).

(i) If µn+1 = 0 then it follows from (1.6) that ∆µ,c(In+1) = ∆µ̂,c(In), and therefore γµ,c
i (In+1) =

γµ̂,c
i (In) for all i, proving (i).
(ii) Suppose now that µn+1 > 0. We first consider the case when cs = 0, and show that ∆µ,c(In+1)

is a cone with apex s. Indeed, suppose that cs = 0, consider any face F ∈ ∆µ,c(In+1) with s ̸∈ F ,
and let µ \ (c+ eF ) = (µ′

1, . . . , µ
′
n+1). We have

µ \ (c+ eF∪{s}) = µ \ (c+ eF )− en+1 = (µ′
1, · · · , µ′

n, µ
′
n+1 − 1)

since cs = 0, so applying (6.1) twice we obtain

µ \ (c+ eF∪{s}) ∈ P (In+1)⇐⇒ (µ′
1, . . . , µ

′
n) ∈ P (In)⇐⇒ µ \ (c+ eF ) ∈ P (In+1).

This proves that F ∪ {s} ∈ ∆µ,c(In+1) and therefore ∆µ,c(In+1) is a cone with apex s. We get

H̃i(∆
µ,c(In+1)) = 0, and hence γµ,c

i (In+1) = 0, for all i.
To conclude, we consider the case when cs > 0. Since cs ≤ ps − 1 by hypothesis, we have ps ≥ 2,

hence µn = µn+1, and therefore p(µ̂) = p(µ)− es. We claim that

(6.2) ∆µ,c(In+1) = ∆µ̂,c−es(In).

To prove (6.2), consider any subset F ⊂ [s] and write µ \ (c+ eF ) = (µ′
1, . . . , µ

′
n+1) as before. Since

p(µ̂) = p(µ)− es, it follows that

µ̂ \ (c− es + eF ) = (µ′
1, . . . , µ

′
n).(6.3)
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Using (6.1), we have

µ \ (c+ eF ) ∈ P (In+1)⇐⇒ (µ′
1, . . . , µ

′
n) ∈ P (In),

which combined with (6.3) implies that F ∈ ∆µ,c(In+1) if and only if F ∈ ∆µ̂,c−es(In). This proves

(6.2), showing that γµ,c
i (In+1) = γµ̂,c−es

i for all i, as desired. □
Example 6.3. Let Im = ⟨(5, 1), (2, 2)⟩Sm for m ≥ 2. If we apply Theorem 1.3 to I2, we see that the
only numbers γµ,c

i that are non-zero are

(6.4) γ
(2,2),(0)
0 (I2) = γ

(5,1),(0)
0 (I2) = γ

(5,2),(0,0)
1 (I2) = 1.

In particular, we have

Tor0(I2,k) ∼= Tor0(I2,k)⟨(2,2)⟩ ⊕ Tor0(I2,k)⟨(5,2)⟩ ∼= S ⊕ S( , )

and

Tor1(I2,k) ∼= Tor1(I2,k)⟨(5,2)⟩ ∼= S( , ).

Based on (6.4), Theorem 6.2 gives a recipe to compute all the numbers γµ,c
i for all the ideals Im

with m ≥ 2. For instance, when m = 4 we have

γ
(2,2,0,0),(0)
0 (I4) = γ

(2,2,2,0),(1)
0 (I4) = γ

(2,2,2,2),(2)
0 (I4) = 1,

γ
(5,1,0,0),(0,0)
0 (I4) = γ

(5,1,1,0),(0,1)
0 (I4) = γ

(5,1,1,1),(0,2)
0 (I4) = 1,

γ
(5,2,0,0),(0,0)
1 (I4) = γ

(5,2,2,0),(0,1)
1 (I4) = γ

(5,2,2,2),(0,2)
1 (I4) = 1,

and these are all the non-zero numbers γµ,c
i for I4. By Theorem 1.3, the S4-module structure of

Tor i(I4, k) is then computed as follows.

Tor0(I, k) ∼= Tor0(I, k)⟨(2,2,0,0)⟩ ⊕ Tor0(I, k)⟨(5,1,0,0)⟩ ∼= S( , ) ⊕ S( , , ),

Tor1(I, k) ∼= Tor1(I, k)⟨(2,2,2,0)⟩ ⊕ Tor1(I, k)⟨(5,1,1,0)⟩ ⊕ Tor1(I, k)⟨(5,2,0,0)⟩
∼= S( , ) ⊕ S( , , ) ⊕ S( , , ),

Tor2(I, k) ∼= Tor2(I, k)⟨(2,2,2,2)⟩ ⊕ Tor2(I, k)⟨(5,1,1,1)⟩ ⊕ Tor2(I, k)⟨(5,2,2,0)⟩
∼= S ⊕ S( , ) ⊕ S( , , ),

and

Tor3(I4,k) ∼= Tor3(I4, k)⟨(5,2,2,2)⟩ ∼= S( , ).

By computing the dimensions of the relevant S4-representations, we obtain the Betti tables of I2
(left) and I4 (right) below.

0 1
total: 3 2
4: 1 .
5: . .
6: 2 2

0 1 2 3
total: 18 32 19 4
4: 6 . . .
5: . 8 . .
6: 12 24 7 .
7: . . 12 .
8: . . . 4
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Theorem 6.2(ii) tells that the representation of Tor i(Iℓ,k) and that of Tor i+1(Iℓ+1,k) are related
when Im is generated by monomials. We expect that a similar phenomenon occurs even when Im is
not generated by monomials, and end this paper with the following question, which is inspired from
our result and a result given in [26]

Question 6.4. Let Im be as in (1.9) and let i be a sufficiently large integer. Suppose char(k) = 0.
Is is true that, for all ℓ > i, if S(λ1,...,λr) is a summand of Tor i(Iℓ, k), then S(λ1,...,λr,1) is a summand
of Tor i(Iℓ+1,k)?
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