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This is a joint work with Ryo Takahashi [5]. Throughout this abstruct, R is a Noetherian ring, I is an
ideal of R, and, Mod R is a category of R-modules. An I-cofinite R-module is by definition an R-module X
that satisfies both of the following two conditions (a) and (b).

(a) Supp X is contained in V().

(b) Ext(R/I,X) is finitely generated for all integers i.
Hartshorne [4] introduced the notion of an I-cofinite module, and constructed an example where a local
cohomology module H% (M) is not I-cofinite, which is a counterexample to a conjecture of Grothendieck [3].
Since then, so many people have worked on the question asking when HZI(M ) is I-cofinite, and so many
results on it have been obtained; see for example [2] and references therein.

Denote by Cof;(R) the full subcategory of Mod R consisting of I-cofinite R-modules. After proving results
on the relationship between the categorical structure of Cof;(R) and the cofiniteness of local cohomology
modules, Bahmanpour [2] posed the following question.

Question 0.1 (Bahmanpour). Suppose that Cof;(R) is an abelian subcategory of Mod R. Is then H' (M)
an [-cofinite R-module for all finitely generated R-modules M and all integers i ?

The purpose of this talk is to provide a couple of answers to Question mainly by means of techniques
of subcategories of modules. Denote by Cof?(R) the full subcategory of Mod R consisting of R-modules X
satisfying the above condition (b) only; such modules are called I-ETH-cofinite and investigated, see [1] for
example. Note that for an R-module M and an integer i there are equivalences

HY (M) is I-cofinite <= H}(M) € Cof;(R) <= HY(M) € Cof(R).
The main result of this talk is the following theorem.

Theorem 0.2. Assume that one of the following three conditions is satisfied.

(1) Cof%(R) is abelian. _

(2) Cofr(R) is Serre, and H}(R) is I-cofinite for any integer i.

(3) Cofr(R) is abelian, H}(R) is I-cofinite for any integer i, and Sing R is contained in V(I).
Then HlI(M) s I-cofinite for any finitely generated R-module M and any integer i.
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