AFFINE AND UNIRATIONAL UNIQUE FACTORIAL DOMAINS WITH UNMIXED GRADINGS

TAKANORI NAGAMINE

This is a joint work with Gene Freudenburg and based on [2]. Throughout the paper, the word "ring" means a commutative ring with unity.

For a ring A and integer $n \geq 1$, $A^{[n]}$ denotes the polynomial ring in n variables over A. If A is an integral domain, Q(A) denotes the quotient field of A. An integral domain A is said to be **rational** (resp. **unirational**) over a field k if $Q(A) \cong Q(k^{[n]})$ (resp. $Q(A) \subseteq Q(k^{[n]})$) for some $n \in \mathbb{N}$.

Let k be a field and $G \cong \mathbb{Z}^n$ for some integer $n \geq 0$ and let A be an integral domain over k with G-grading $A = \bigoplus_{g \in G} A_g$. The grading is **effective** if the weight monoid $M = \{g \in \mathbb{Z}^n \mid A_g \neq 0\}$ generates G as a group, and **unmixed** if for $g, h \in M, g+h=0$ implies g=h=0; see [5], 1.5. If A is finitely generated of dimension n over k and the grading is effective, then A is the coordinate ring of an affine toric variety. These rings have been studied for a long time and can be described combinatorially using cones.

This paper investigates unique factorization domains (UFDs) A which are either finitely generated or unirational over k, and admit an effective unmixed \mathbb{Z}^{d-1} -grading with $A_0 = k$, where d is the dimension of A and k is algebraically closed. This means that the variety $V = \operatorname{Spec} A$ admits a torus action of complexity one. Several authors have classified such rings subject to certain additional hypotheses. Mori [6] and Ishida [4] classified them for dimensions d = 2, 3, respectively, in case A is finitely generated. Hausen, Herppich and Süss [3] classified them for all dimensions in terms of Cox rings, under the additional assumption that k is algebraically closed of characteristic zero and A is finitely generated. Our main result is the classification of these rings with no additional hypotheses.

To this end, assume that the following data Δ are given.

- $(\Delta.1)$ An integer $n \geq 2$ and partition $n = n_0 + \cdots + n_r$ where $r, n_i \geq 1, 0 \leq i \leq r$.
- (Δ .2) A sequence $\mathbb{B}_i = (\beta_{i1}, \dots, \beta_{in_i}) \in (\mathbb{Z}_{\geq 1})^{n_i}$, $0 \leq i \leq r$, where $\gcd(d_i, d_j) = 1$ when $i \neq j$, $d_i = \gcd(\beta_{i1}, \dots, \beta_{in_i})$.
- $(\Delta.3)$ A sequence of distinct elements $\lambda_2, \ldots, \lambda_r \in k \setminus \{0\}$.

Any such data set Δ will be called **trinomial data** over k.

Given trinomial data Δ over k, define the ring $k[\Delta]$ as follows. Let $k^{[n]} = k[\mathbb{T}_0, \dots, \mathbb{T}_r]$ be the polynomial ring in n variables over k, where $\mathbb{T}_i = \{T_{i1}, \dots, T_{in_i}\}, 0 \le i \le r$, defines a partition of the set of variables T_{ij} . Given i, let $\mathbb{T}_i^{\mathbb{B}_i}$ denote the monomial $T_{i1}^{\beta_{i1}} \cdots T_{in_i}^{\beta_{in_i}}$. We then define:

$$k[\Delta] = k[\mathbb{T}_0, \dots, \mathbb{T}_r] / (\mathbb{T}_0^{\mathbb{B}_0} + \lambda_i \mathbb{T}_1^{\mathbb{B}_1} + \mathbb{T}_i^{\mathbb{B}_i})_{2 \le i \le r}$$

Observe the following.

- (1) If r = 1, then λ_i is the empty sequence and $k[\Delta] = k^{[n]}$.
- (2) If K is an extension field of k, then $K \otimes_k k[\Delta] = K[\Delta]$.

Recently, we showed the following.

Theorem 1.1. ([1], Theorem 5.1) Let k be any field. Given trinomial data Δ over k, $k[\Delta]$ is an finitely generated rational UFD of dimension $n-r+1 \geq 2$ over k.

The following is the main result in this paper. Our main result builds on Theorem 1.1.

Theorem 1.2. Suppose that k is an algebraically closed field and A is an integral domain of finite transcendence degree $d \geq 2$ over k. The following conditions (1), (2) and (3) for A are equivalent.

- (1) $A \cong_k k[\Delta]^{[m]}$ for some trinomial data Δ over k and some $m \in \mathbb{N}$.
- (2) A is a unirational UFD which admits an effective unmixed \mathbb{Z}^{d-1} -grading with $A_0 = k$.
- (3) A is a finitely generated UFD which admits an effective unmixed \mathbb{Z}^{d-1} -grading with $A_0 = k$.

When k is algebraically closed, the following corollary shows that the only smooth varieties among those of the form $V = \operatorname{Spec}(k[\Delta])$ for trinomial data Δ are the affine spaces.

Corollary 1.3. Assume that k is algebraically closed. Given trinomial data Δ over k, if $V = \operatorname{Spec}(k[\Delta])$ is smooth then $V \cong_k \mathbb{A}^n_k$. That is, $k[\Delta] \cong_k k^{[n]}$.

The following corollary shows that the Zariski cancellation problem holds for an algebra A which admits an effective unmixed \mathbb{Z}^{d-1} -grading with $A_0 = k$.

Corollary 1.4. Let $d \geq 2$. Suppose that k is an algebraically closed field and A is an integral domain satisfying $A^{[1]} \cong_k k^{[d+1]}$. If A admits an effective unmixed \mathbb{Z}^{d-1} -grading with $A_0 = k$, then $A \cong_k k^{[d]}$.

Proof. Suppose that $A^{[1]} \cong_k k^{[d+1]}$. Then A is a unirational UFD of transcendence degree d over k. By Theorem 1.2, $A \cong_k k[\Delta]^{[m]}$ for some trinomial data Δ over k and some $m \in \mathbb{N}$. Since $k[\Delta]^{[m+1]} \cong_k A^{[1]} \cong_k k^{[d+1]}$, $V = \operatorname{Spec}(k[\Delta])$ is smooth. It follows from Corollary 1.3 that $k[\Delta] \cong_k k^{[d-m]}$ and hence $A \cong_k k^{[d]}$.

References

- [1] D. Daigle, G. Freudenburg, and T. Nagamine, Generalizations of Samuel's criteria for a ring to be a unique factorization domain, J. Algebra **594** (2022), 271–306.
- [2] G. Freudenburg and T. Nagamine, Affine and Unirational unique factorial domains with unmixed gradings, arXiv:2307.05859.
- [3] J. Hausen, E. Herppich, and H. Süss, Multigraded factorial rings and Fano varieties with torus actions, Doc. Math. 16 (2011), 71–109.
- [4] M. Ishida, Graded factorial rings of dimension 3 of a restricted type, J. Math. Kyoto Univ. 17 (1977), 441–456.
- [5] T. Kambayashi and P. Russell, On linearizing algebraic torus actions, J. Pure Appl. Algebra 23 (1982), 243-250.
- [6] S. Mori, Graded factorial domains, Japan J. Math. 3 (1977), 224–238.

NATIONAL INSTITUTE OF TECHNOLOGY (KOSEN), OYAMA COLLEGE *Email address*: t.nagamine14@oyama-ct.ac.jp