SEMINORMALITY AND GRADED RINGS

JUN HORIUCHI (NIPPON INSTITUTE OF TECHNOLOGY), KAZUMA SHIMOMOTO (TOKYO INSTITUTE OF TECHNOLOGY)

This talk is based on [1]. The complete version of this research will be submitted to elsewhere.

1. Introduction

Let A be a commutative Noetherian ring. $I \subseteq A$ is a proper ideal. For any integers $n \leq 0$, we set $I^n = A$. With these notation, we define the Rees ring of I as $\mathscr{R}_+(I) := \bigoplus_{n \geq 0} I^n t^n$, extended Rees ring of I as $\mathscr{R}(I) := \bigoplus_{n \in \mathbb{Z}} I^n t^n$, and the associated graded ring of I as $G(I) := \mathscr{R}_+(I)/I\mathscr{R}_+(I) = \bigoplus_{n \geq 0} I^n/I^{n+1}$ respectively. The purpose of this talk is to present the following result. For the definitions of seminormal ring and weak normal ring, we recommend survey paper [2] for a reference.

Theorem 1.1. (A, \mathfrak{m}) is a Noetherian local ring of dim $A \geq 1$. I is an ideal of A. Then we have the followings.

- (1) If G(I) is seminormal, then $\mathcal{R}_{+}(I)$, $\mathcal{R}(I)$ and A are seminormal.
- (2) If G(I) is weakly normal, then $\mathcal{R}_{+}(I)$, $\mathcal{R}(I)$ and A are weakly normal.

Let us remind that similar result hold for the normality. To prove above result, we need the "Matijevic-Roberts-type" theorem for seminomality and weak normality.

Theorem 1.2. $A = \bigoplus_{n \in \mathbb{Z}} A_n$ is a graded Noetherian ring. Suppose that the integral closure of A in its total ring of fractions is \mathbb{Z} -graded. Then we have the followings.

- (1) A is seminormal if and only if its localization $A_{\mathfrak{m}}$ is seminormal, where \mathfrak{m} is any graded maximal ideal of A.
- (2) A is weakly normal if and only if its localization $A_{\mathfrak{m}}$ is weakly normal, where \mathfrak{m} is any graded maximal ideal of A.

References

- [1] J. Horiuchi and K. Shimomoto, Matijevic-Roberts type theorems, Rees rings and associated graded rings, in preparation.
- [2] M. Vitulli, Weak normality and seminormality, Commutative algebra: Noetherian and non-Noetherian perspectives, Springer-Verlag, (2011), 441–480.

Email address: jhoriuchi.math@gmail.com