DIFFERENCE OF HILBERT SERIES OF HOMOGENEOUS AFFINE SEMIGROUP RING AND ITS NORMALIZATION

AKIHIRO HIGASHITANI

Let $Q \subset \mathbb{Z}_{\geq 0}^d$ be an affine semigroup, which is a finitely generated sub-semigroup of $\mathbb{Z}_{\geq 0}^d$. We say that Q is homogeneous if the minimal generating set of Q lies on the same hyperplane not containing the origin. The normalization of Q is the semigroup of the form $\overline{Q} = \mathbb{Z}Q \cap \mathbb{R}_{\geq 0}Q$, where $\mathbb{Z}Q$ (resp. $\mathbb{R}_{\geq 0}Q$) denotes the free abelian group (resp. the polyhedral cone) generated by Q. We say that Q is normal if $\overline{Q} = Q$. Let \mathbb{K} be a field. We denote by $\mathbb{K}[Q]$ the associated semigroup ring of Q. Note that $\mathbb{K}[\overline{Q}] = \overline{\mathbb{K}[Q]}$ and $\mathbb{K}[\overline{Q}]$ is a finitely generated $\mathbb{K}[Q]$ -module. For the introduction to the theory of affine semigroup rings, see, e.g., [1, Section 6].

Given a \mathbb{Z} -graded \mathbb{k} -algebra $R = \bigoplus_{i \in \mathbb{Z}} R_i$, let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated \mathbb{Z} -graded R-module with $\dim_{\mathbb{K}} M_i < \infty$ for each i. Let $\mathrm{Hilb}(M,t) = \sum_{i \in \mathbb{Z}} \dim_{\mathbb{K}} M_i t^i$ denote the $\mathrm{Hilbert}$ series of M. If R is homogeneous, i.e., R is generated by R_1 and $R_0 = \mathbb{K}$, then we see that $\mathrm{Hilb}(M,t)$ is of the form $\mathrm{Hilb}(M,t) = \frac{h_M(t)}{(1-t)^{\dim M}}$, where $h_M(t) \in \mathbb{Z}[t^{\pm}]$ with $h_M(1) \neq 0$ such that the least degree of $h_M(t)$ is equal to the least index i with $M_i \neq 0$. We call the (Laurent) polynomial $h_M(t)$ appearing in $\mathrm{Hilb}(M,t)$ the h-polynomial of M. If R is $\mathbb{k}[Q]$ for some homogeneous affine semigroup Q, then we use the notation $\mathrm{Hilb}(Q,t)$ and $h_Q(t)$ instead of $\mathrm{Hilb}(\mathbb{k}[Q],t)$ and $h_{\mathbb{k}[Q]}(t)$, respectively.

The following is the first main theorem of this talk.

Theorem 1. Let Q be a homogeneous affine semigroup and assume that $\mathbb{k}[Q]$ satisfies Serre's condition (S_2) . Then $\deg(h_Q(t)) \geq \deg(h_{\overline{Q}}(t))$.

Here, $\deg(f(t))$ denotes the degree of the polynomial f(t). A proof of Theorem 1 relies on the structure of holes of Q, i.e., $\overline{Q} \setminus Q$. It is known by [2, Theorem 5.2] that $\mathbb{k}[Q]$ satisfies Serre's condition (S_2) if and only if $\overline{Q} \setminus Q$ consists of faces of Q of dimension d-1.

The following second main theorem shows the existence of counterexamples of Theorem 1 if we drop the assumption (S_2) .

Theorem 2. For any positive integer m, there exists a homogeneous affine semigroup Q such that $\deg(h_{\overline{Q}}(t)) - \deg(h_{Q}(t)) = m$.

An example of Q satisfying $\deg(h_{\overline{Q}}(t)) - \deg(h_Q(t)) = m$ is constructed as the join of the edge ring of a certain graph.

REFERENCES

- [1] W. Bruns and J. Herzog, "Cohen-Macaulay rings, revised edition", Cambridge University Press, 1998.
- [2] L. Katthän, Non-normal affine monoid algebras, Manuscr. Math. 146, (2015), 223–233.

(A. Higashitani) Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan

 $Email\ address: \ {\tt higashitani@ist.osaka-u.ac.jp}$