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Let R be a Noetherian domain and let I be an ideal in R. In 1976, Ratliff considered the
following statement on the set AssR(R/In) of primes associated to powers of I:

If P ∈ AssR(R/Ik) for some k ≥ 1, then P ∈ AssR(R/In) for all large n.

Ratliff gave in [Rat76] a number of positive answers including results on the set AssR(R/In)
of primes associated to the integral closure of powers of I. In 1979, Brodmann proved that the
statement is true if k is large enough, but it is not true in general. More precisely, Brodmann
showed that for any integer m ≥ 2, there exist examples of an affine k-domain R of dimR = 2
and ideals I ⊂ P in R such that P ∈ AssR(R/In) if and only if n < m.

This examples show that the sets AssR(R/In) do not necessarily increase in initial part,
unlike the sets AssR(R/In) are monotonically increasing and eventually stable. Then it is
natural to ask about the initial behavior of the sets AssR(R/In). In [Rat83], Ratliff raised the
following interesting question:

Question 1 (Ratliff). Given a finite set S of positive integers, do there exist a Noetherian ring
R and ideals I ⊂ P in R such that P ∈ AssR(R/In) if and only if n ∈ S?

Note that Brodmann’s examples gave a positive answer to this question in a case where
S = {1, 2, . . .m− 1} is a consecutive integers starting from 1 to m− 1.

Recently, Hà-Ngyuen-Trung-Trung gave in [HNTT21] a positive answer to this question. In
fact, they settled a conjecture of Herzog-Hibi in [HeHi05] on the depth function of powers of
ideals, and showed that a positive answer to the Ratliff’s question follows as a direct conse-
quence. We point out that they gave how to construct such ideals explicitly and the ideals can
be a monomial ideal in a polynomial ring whose number of variables also depends on a given
set S in the question.

In this talk, by improving and generalizing the Brodmann’s classical example, we will give
a new example to the question of Ratliff in a special case where S is any consecutive positive
integers. Our example shows the following:

Theorem 2. For any consecutive integers S = {d, d+1, . . . , d′} starting from a positive integer
d to d′ ≥ d, there exist a Noetherian domain R of dimension d+ 1 and ideals I ⊂ P in R such
that P ∈ AssR(R/In) if and only if n ∈ S.

We point out that the monomial ideals constructed in [HNTT21] for the set S in Theorem
2 uses at least 5 variables. On the other hands, if we take d = 2 (resp. d = 3) in Theorem 2,
we can obtain such ideals in a ring of the Krull dimension 3 (resp. 4).
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