Face numbers of (high dimensional) triangulated mfds Satoshi Murai (Waseda University)

Combinatorial Structures in Geometric Topology

2015 June 24

Aim of the talk

Explain some ideas to study face numbers of high dim triangulated mfds that comes from algebraic tools

おわば (apology)

I will not talk about "Stanley-Reisner theory"

Main theme of this talk

Complete description

A complete description of $f(\Delta)$ is obtained for following mfds

- \$ 53,52x51, 52 X51, RP3 (Walkup 1990)
- @(5'x5') , 53 x5', CP (Swartz 2009)
- @ 53 XS1 (Chestrut-Spir-Swartz 2008)
- @ (52x51)#4 and (52x51)#4 for small be (Lytz-Sulanke-Swartz 2009)
- @ 59 for any d≥4 (Billera-Lee 1981 (sufficiency)
 Stanley 1980
 Adiprasito 2018
 Papadakis-Petrotou 2020

How we study face numbers of mfds?

- 1 For surfaces, we only need to consider "fo"
- Tor 3- and 4-mfds, we need to consider "fo, f,"

 In particular, it is important to understand $f_0^{min}(M)$, $f_1^{min}(M,n)$, $f_1^{max}(M,n)$
- For mfds of dim d≥5,
 we need to understand "fo, fi, w, fight"

@ How we can study this?

2. Face numbers of higher dim mfds

Goal

Explain an idea to study $f(\Delta)$ of high dimtriangulated mfd Δ that comes from algebraic study (but I will not go into algebra)

the case of a sphere

Point

We want to under stand " $f(\Delta)$."
But " $f(\Delta)$ " is not a right object to study.

Def Δ : triangulation of S^{d-1} .

Define $k_0(\Delta)$, $k_1(\Delta)$, \dots , $k_q(\Delta)$ by $k_{la}(\Delta) := \sum_{\lambda=0}^{la} (-1)^{la \cdot \lambda} \binom{q-\lambda}{q-k} \uparrow_{la-1}(\Delta)$ we set $f_{-1}(\Delta) = 1$

These "h"-numbers have the following properties

- (1) Knowing to(a), ..., to(a) is equivalent to to(a), ..., to(a)
- ② h_λ(Δ) = h_{d-λ}(Δ) (Defin-Sommerville equation)
- 3 ho = h = m = K121 = m = ha (Stanley, Adiprasito, Papadakis-Petrotou

f=(6,12,8)

1 1 = (ho, hı, hı, hz) = (1,3,3,1)

assuming that we know BL (M)

the case of a sphere

g-theorem (Billerg-Lee, Stanley, Adiprasito, Papadakis-Petrotou) g=(80=1,31,50,3141) seq. of non-negative integers, TFAE

(1) = triangulation (1) of Sqt s.t. 9 = 9,(4) for all b

(2) 3 homogeneous ideal ICS=R[x1,...,xg,] s,t.

 Δ s triangulation of S^{4-1} Define $\theta_0(\Delta), \theta_1(\Delta), \dots, \theta_{L_2^2}(\Delta)$ by $\theta_1(\Delta) = \theta_0(\Delta) - \theta_{A-1}(\Delta)$

Knowing & numbers is equivalent to knowing & numbers

f = (6, 12, 8) U $L = (ho, hi, hi, h_3)$

 $k = (ho, hi, hi, h_3, 1)$

g = (1,2)

the case of mfds

Point "L(A) and g(A)" are not right object to study

example

This has f(a)= (9,27,18)

Maybe there is a better object to study?

9 = dim (5/1) torall be

homogeneous component of degree a

the case of mfds

Δ: triangulation of a connected closed (d-1)-mfd M

Def Define $\mathcal{K}'_0(\Delta)$, $\mathcal{K}'_1(\Delta)$, ..., $\mathcal{K}'_d(\Delta)$ by

 $h_{\lambda}''(\Delta) = \frac{1}{h_{\lambda}}(\Delta) - \left(\frac{d}{\lambda}\right) \left(\sum_{\substack{1 \leq h \leq h \\ h \neq d}} (-1)^{\lambda - h} \beta_{h-1}(M)\right)$

example

F(A)= (9,27,18)

 $t'' = t - 2 \times (0,0,3,-1)$ = (1,6,6,1) \(\frac{1}{2}\) Symmetric \(\frac{0}{2}\)

the case of mfds

Δ: triangulation of a connected closed (d-1)-mfd M

Def Define Ko(A), K'(A), ..., Ka(A) by

 $h_{\lambda}''(\Delta) = \frac{1}{4} \left(\frac{1}{4} \right) \left(\frac{1}{2} \left(-1 \right)^{\lambda - k} \beta_{k-1}(M) \right)$

These h'- numbers have the following properties

- (1) knowing to(A), ..., to(A) is equivalent to to(A), ..., to(A)
- 3 Ko ≤ K' ≤ m ≤ K' 1 2 m ≥ Ka (Adiprasito-Papadakis-Petrotou)

